

"Investing in Africa's future" COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE (CBPLG)

DATA STRUCTURES AND ALGORITHMS -CSC 411

END OF SECOND SEMESTER EXAMINATIONS

MAY/JUNE 2020

LECTURER: Mr. Timothy Makambwa

DURATION: 48 HOURS

INSTRUCTIONS

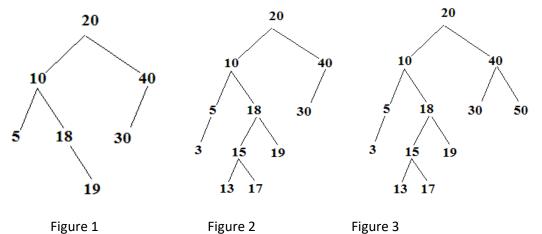
Answer **One** question from this Examination

Start **each** question on a new page on your answer sheet.

The marks allocated to **each** question are shown at the end of the section.

Question One

A)


Assume that each of the expressions below gives the processing time T(n) spent by an algorithm for solving a problem of size n. Select the dominant term(s) having the steepest increase in n and specify the lowest Big-Oh complexity of each algorithm.

[20 Marks]

Expressions	Dominant Terms	O()
5 + 0.001n ³ + 0.025n		
500n + 100n ^{1.5} + 50n log10		
n		
0.3n + 5n ^{1.5} + 2.5 • n ^{1.75}		
$n^{2} \log 2 n + n(\log 2 n)^{2}$		
n log3 n + n log2 n		
3 log8 n + log2 log2 log2 n		
2n + n ^{0.5} + 0.5n ^{1.25}		
0.01n log2 n + n(log2 n) ²		
100n log3 n + n ³ + 100n		
0.003 log4 n + log2 log2 n		

B)

Given the following binary search tree:

B.1 Draw the AVL tree in Figure 1 after insert the element 25

[10 Marks]

[10 Marks]

B.2 Convert Figure 2 into AVL tree

B.3 Convert Figure 3 into AVL tree and then draw the AVL tree after Delete the element 20

[10 Marks]

Question Two

Suppose Fibonacci_3 defines as the following:

$\operatorname{Fib}(n) = \begin{cases} 0 \\ 1 \\ 1 \end{cases}$	if $n = 0$ if $n = 1$ if $n = 2$
Fib $(n-1)$ + Fib $(n-2)$ + Fib $(n-3)$	otherwise
2.1 Show the first 10 numbers of Fibonacci_3	

2.2 Write a recursive function for Fibonacci_3								
2.3 Write a Non-recursive function for Fibonacci_3								
2.4 Constuct the Binary Search tree given the number 50,30,70,25,80,40,60,75,35,90,100								
	[5 Marks]							
2.5 Draw the Binary Search tree in (3.1) after <u>delete</u> the element 90	[5 Marks]							
2.6 Draw the Binary Search tree in (3.2) after insert the element 73	[5 Marks]							
2.7 Draw the Binary Search tree in (3.3) after <u>delete</u> the element 100 and 80 (use the rigou need to choose left side or right)								

[5 Marks]

2.8 Draw the Binary Search tree in (3.4) after <u>delete</u> the element 25 [5 Marks]

Question Three

3.1. Based on the given sequence, construct a Binary Heap step by step through "insert one element at a time." [10 Marks]

0	1 2	2 3	4	5	6	7 8	39	10	11	12	13	14	15		
	1	3	5	7	9	20	18	16	14	12	10	8	6	4	2

3.2. Based on the given sequence, use "**BuildHeap operation**" to construct a Binary Heap step by step: [10 Marks]

0	1 2	3	4	5	6	7 8	39	10	11	12	13	14	15		
	1	3	5	7	9	20	18	16	14	12	10	8	6	4	2

3.3. Draw the Binary Heap in (4.2) after **one** deleteMin operation [5 Marks]

3.4. Draw the Binary Heap in (3.3) after **one** deleteMin operation [5 Marks]

3.5 Explain the following terms as they are used in data structures and algorithms

(i) Sorting	
(ii) Traversal	
(iii) Push	
(iv) Search space	
(v) Insert	[10 Marks]
Explain the factors you would consider when selecting an algorithm to u	use from among several
alternative algorithms to use	[5 Marks]
Compute the running time for the following functions under asymptotic	growth
(i) Linear algorithm	[2 Marks]
(ii) $N \log N$ algorithm	[3 Marks]
	 (ii) Traversal (iii) Push (iv) Search space (v) Insert Explain the factors you would consider when selecting an algorithm to u alternative algorithms to use Compute the running time for the following functions under asymptotic (i) Linear algorithm

END OF PAPER