

"Investing in Africa's Future"

COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE

REM 500 RESESEARCH METHODS

END OF FIRST SEMESTER EXAMINATIONS

NOVEMBER 2018

LECTURER(S): MUNGURE S & CHIKAKA E

3HRS

INSTRUCTIONS

Answer ALL Questions in Section A and Any TWO (2) Questions from Section B

The mark allocation for each question is indicated at the end of the question

Credit will be given for logical, systematic and neat presentations

SECTION A: compulsory (40%)

Question 1

1 A farmer went looking for mangoes for his fifteen orchard trees orchard and made the following records; 0; 4; 0; 1; 2; 3; 4; 2; 0; 5; 4; 5; 6; 0; 7 Find the

(a) (b) (c) (d) (e))))	Mode median mean Calculate the variance and the standard deviation and standard error of this data Here are the scores attained by the students in the recent in-class exam 18; 100;27; 52; 85; 61; 68; 82; 54; 87; 91; 34;78; 93; 59	[2] [2] [4] [10]
	i. ii. iii.	Establish the lower quartile, median, and upper quartile Identify skewness of the data Draw a stem and leaf to show the distribution of the data	[6] [3] [5]

(f) Explain how the Chi-Square (χ^2) is an important statistic in Quantitative research? [4]

(g) Using data in (e) illustrate the relevance of a bar graph in Quantitative research [4]

SECTION B Answer Any TWO (2) Questions (60%)

2.	and appear in deal the affectives between			
	a. Qualitative and quantitative research	[10]		
	b. Systematic and stratified sampling	[10]		
	c. Descriptive and inferential statistics	[10]		
3.	Theory and literature review provide the necessary foundation for developing co	literature review provide the necessary foundation for developing coherent		
	research. How exactly do these two help the researcher?	[30]		
4.	a. Describe the evolution of research ethics taking account of the major milestones s			
	the end of World War 2.	[15]		
	b. Explain how you would observe the main principles of research ethics in a re			
	your choice.	[15]		
5.	Explain the following terms as they relate to the practice of research (you can also			
	illustrate your response). Your explanations have to be thorough and exhaustive.			
a.	Population	[5]		
b.	Random sample	[5]		
c.	Hawthorne effect	[5]		
d.	Paradigms	[5]		
e.	Cultural competence			
f.	Randomisation	[5]		
		[5]		

Standard Error = $SE_{\overline{X}} = \frac{s}{\sqrt{n}}$ $P(K \le x + n, p) = \sum_{k=0}^{\Delta} {n \choose k} p^k q^{n-k}$ Variance = $S_{-}^2 = \frac{\sum(x-\overline{x})^2}{n-1} = S_2^2 = \frac{\sum(x^2 - \frac{(\sum x)^2}{n})}{n-1}$ $Z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$ $t_1 = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$ $L^2 = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{(1/n_1 + 1/n_2)}}$ A 100 (1- α) % confidence interval (CI) for $\mu_1 - \mu_2$ is given by: $(\overline{x}_1 - \overline{x}_2) \pm t_{crit} \times \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$ $z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p \overline{q}}{n_1} + \frac{p \overline{q}}{n_2}}}$ where $\overline{p} = \frac{x_1 + x_2}{n_1 + n_2}$ $t = \frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}}$ $S^2 p = \frac{(n_1 - 1)S_1^2 + (n_1 - 1)S_2^2}{n_1 + n^2 - 2}$

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$
 95% CI for a proportion = $p \pm 1.96\sqrt{\frac{p(1-p)}{n}}$

95% CI for a mean =
$$\overline{X} \pm 1.96 \text{ } \acute{O}/\sqrt{n} \ t = r \frac{\sqrt{(n-2)}}{\sqrt{(1-r^2)}} \qquad r_1 = \frac{\sum (x-\overline{X})(y-\overline{Y})}{\sqrt{[\sum (x-\overline{X})^2 \sum (y-\overline{Y})^2]}}$$

$$\boldsymbol{b}_{1} = \frac{\sum (\boldsymbol{x} - \overline{\boldsymbol{X}})(\boldsymbol{y} - \overline{\boldsymbol{Y}})}{\sum (\boldsymbol{x} - \overline{\boldsymbol{X}})^{2}} \qquad \boldsymbol{b}_{2} = \frac{\sum \boldsymbol{x} \boldsymbol{y} - \frac{(\sum \boldsymbol{x})(\sum \boldsymbol{y})}{n}}{\sum \boldsymbol{x}^{2} - \frac{(\sum \boldsymbol{x})^{2}}{n}} \qquad \boldsymbol{b}_{0} = \overline{\boldsymbol{Y}} - \boldsymbol{b}_{1} \overline{\boldsymbol{X}} \qquad \chi^{2} = \sum \frac{(\boldsymbol{0} - \boldsymbol{E})^{2}}{\boldsymbol{E}}$$

$$SE_{b} = \frac{1}{\sqrt{\sum(x-\bar{x})^{2}}} \quad where \ S^{2} = \frac{1}{2(x-r)} \frac{1}{n-2} \qquad \chi^{2} = \sum \frac{1}{E}$$

$$n_{1} = \frac{\left[\frac{z_{\alpha/2}}{\sqrt{(r+1)\overline{p}q} + z_{1-\beta}}\sqrt{rp_{1}q_{1} + p_{2}q_{2}}\right]^{2}}{r(p_{1}-p_{2})^{2}} \qquad n_{2} = r \times n_{1}$$

$$95\% \text{ Cl for OR} = e^{\ln(OR) \pm 1.96 \cdot \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

$$e^{\ln(RR)\pm 1.96} \cdot \sqrt{\frac{b}{a(a+b)} + \frac{d}{c(c+d)}}$$

95% CI for RR = e