

COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE

NCIS301 – DATABASE SYSTEMS

END OF SECOND SEMESTER EXAMINATIONS

APRIL 2022

LECTURER: MR MUKHALELA

DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This paper carries **5** questions.
- 2. Answer All questions from section A (Practical using a Lab allocated computer) Upload your answer on Moodle.
- 3. Answer any 4 (four) from section B questions use Exam provided Answer booklet in the section.
- 4. Each question carries 20 marks.
- 5. The marks for each question are indicated in square [] brackets.

SECTION A

ONE

a) Consider the relational database shown in figure 1 below and use either MySQL Workbench or XAMP Server to implement it Enter the data into the tables as is:

The database should be named as your fullname+boats like *mukhalelabraitonboatsdb*[5]

Sailors				
sid	sname	rating	age	
1	Fred	7	22	
2	Jim	2	39	
3	Nancy	8	27	

Boats				
bid	bname	color		
101	Nina	red		
102	Pinta	blue		
103	Santa Maria	red		

Reserves

sid	bid	day
1	102	9/12
2	102	9/13

Figure 2: A Sample Relational Database

- b) Design the corresponding Entity-Relationship diagram. NB: You may draw using pen and paper or MySQL Workbench. [5]
- c) Implement the following queries and show the results via a print screen or sreenshot.:
 - a. SELECT s.sname FROM sailors S WHERE s.sname LIKE 'F_%F'. [2]
 - b. SELECT R.sid FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color='red'
 UNION

SELECT R.sid FROM Boats B, Reserves R WHERE R.bid=B.bid AND B.color='green'

[2]

d) Write SQL code for creating table Reserves and show how you are to enforce referential integrity through referencing foreign keys to the other schemas. [3]

e) Soon after attending to an ICT Security Policies workshop with your Senior DBA, he requested that you implement a SQL GRANT COMMAND for securing the database via a user name and a password. Now write the SQL GRANT statement for securing the database to the user 'Zvavharwa' 'Tapedza' who will be the using the Database as an Administrator.

SECTION B

TWO

- a) Using a diagram, illustrate and explain stages of the DBLC. [14]
 b) Identify and briefly exemplify the three types of anomalies which a Database support professional might want to avoid by normalizing database tables. [6]
- a) Using examples, define the following database terms:

	\mathcal{C}		
	i.	Data.	[1]
	ii.	Weak Entity.	[2]
	iii.	Primary Key.	[2]
	iv.	Referential Integrity.	[2]
	v.	Cardinality.	[2]
	vi.	Composite attribute	[2]
b)	Descri	be the three schema architecture.	[9]

THREEConsider the following database tables:

Articles			
<u>ArticleNo</u>	Author	Subject	Price
56-01	Shaanewako	Database	100
25-02	Ngeekwedu	Networks	100
96-23	Charakupa	Programing	120
78-98	Mambondiani	Database	90

Journals			
<u>JournalNo</u>	Author	Subject	Price
23334	Shoko	Database	20

97862	Shaanewako	Calculus	40
10023	Ndau	Networks	30

Show the resultant table (if any) and describe the output of the following:

a) σ_{subject = "database"} and price <="100"(Articles).

[4]

Article No	Author	Subject	Price
56-01	Shayanewako	Database	100

b) \prod author (Articles) $\cup \prod$ author (Journals).

[4]

c) $\sigma_{author} = 'Shaanewako' (Articles X Journals).$

[4]

d) $\rho_{\text{References}}(\sigma_{\text{subject} = "database"}(\text{Articles})).$

[4]

e) $\prod_{\text{subject, author}}$ (Articles).

[4]

FOUR

- a) Briefly describe the concepts of logical and physical data independence as used in databases systems.
- b) Your Database Administrator told you that you shouldn't forget to implement a locking protocol to safeguard execution of transactions. Define a lock and explain the two types of locks available in DBMSs.
 [4]
- c) Describe any three features of a nested transaction and link these to some of the ACID properties of concurrency control. [12]

FIVE

a) Describe the following models of databases:

i. ER model. [2]

ii. Object oriented model. [3]

iii. Network model. [3]

iv. Hierarchical model. [3]

b) Write SQL code snippets for accomplishing the following:

i. Creating a new database to be called "rabbitarydb." [1]

ii. Creating a table called "buck" and any two attributes and their data types. [3]

- iii. Suppose you had forgotten to include the primary key when you coded (bii) above, now write an appropriate SQL code for including a Primary Key. [2]
- iv. Write a statement for inserting any imaginary values into the table that you created in (bii) above. [3]

END OF EXAMINATION PAPER