

"Investing in Africa's future"

COLLEGE OF BUSINESS PEACE LEADERSHIP AND GOVERNANCE

NCSC 101: DISCRETE STRUCTURES

END OF SECOND SEMESTER EXAMINATION

APRIL 2022

LECTURER: DR. WESTON GOVERE

DURATION: 3 HOURS

INSTRUCTIONS

Answer ALL questions in Section A and ANY THREE from Section B.

Total possible mark is **100**.

Start **each** question on a new page on your answer sheet.

The marks allocated to **each** question are shown at the end of the part question.

SECTION A (Answer ALL Questions from this Section)

- A1 Define the following terms as used in Discrete Structures:
 - a) Inverse of a function.
 - b) Lemma.
 - c) Cardinality of a set.
 - d) Binary operation.
 - e) Commutative group.

[2, 2, 2, 2, 2]

A2.

- a) Prove that if $A \subset B$ then $A \cap B = A$.
- b) Prove that there is only one empty set.

[4, 4]

A3.

- a) Using Boolean algebra show that $\neg(p \lor q) \lor \neg(p \lor \neg q)$ is equivalent to $\neg p$.
- b) Find the conjunction of the propositions p and q where p is the proposition "Rebecca's PC has more than 16 GB free hard disk space" and q is the proposition "The processor in Rebecca's PC runs faster than 1 GHz."
- c) Write each of these statements in the form "if p, then q" in English.
 - i. It is necessary to walk 8 miles to get to the top of Long's Peak.
 - ii. To get tenure as a professor, it is sufficient to be world famous.
 - iii. Your guarantee is good only if you bought your CD player less than 90 days ago.
- d) Explain, without using a truth table, why $(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$ is true when at least one of p, q, and r is true and at least one is false, but is false when all three variables have the same truth value.

[4, 2, 3, 3]

A4.

a) Prove by mathematical induction that $5^n - 2^n$ is divisible by 3.

b) If x and y are non-negative reals prove by contradiction the claim that $\frac{x+y}{2} \ge \sqrt{xy}$

[5, 5]

SECTION B (Answer any **THREE** Questions from this Section)

B5

- a) Let *R* be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student's age. Specify a function determined by this relation.
- b) Define a relation A on the set of real numbers R be defined as follows $\forall a, b \in R, aAb \Leftrightarrow a < b$
 - i) Is A reflexive?
 - ii) Is A symmetric?
 - iii) Is A transitive?
- c) Let *R* be a relation xRy if and only if x y is divisible by 5, $x, y \in \mathbb{N}$. Prove that *R* is an equivalence relation.
- d) Let $R_1 = (A, A, E_1)$ and $R_2 = (A, A, E_2)$ be two relations within the set $A = \{2,3,4,6\}$, where $E_1 = \{(x, y) : x \text{ is a multiple of } y\}$ and $E_2 =$
 - {(*x*, *y*): *x* and *y* have no common factors }
 - i) Write E_1 and E_2 as two sets of ordered pairs.
 - ii) Determine the domain and range of R_1 .
 - iii) Display the diagraph of R_1 .
 - iv) Determine the relation matrix of R_2 .

[3, 3, 5, 2, 2, 3, 2]

B6

- a) Let $f: A \to B$ be a function. Define the following terms:
 - i) *f* is surjective
 - ii) f is one-to-one
- b) For each of the following functions $f : \mathbb{R} \to \mathbb{R}$ find the domain and range with justification and verify whether the function is surjective, injective or bijective.
 - i) $f(x) = x + \cos x$

ii) f(x) = x - 4iii) $f(x) = \frac{2}{(x-3)^2}$

c) Find f o g and g o f where $f(x) = \sqrt{x+1}$ and $g(x) = \frac{1}{x^2}$ [2, 2, 4, 4, 4, 4]

B7

- a) How many possible outcomes are there when a fair coin is tossed three times?
- b) In a survey of 200 people about whether they like apples (A), bananas (B), and oranges (C), the following information was obtained:

 $|A| = 112, |B| = 89, |C| = 71, |A \cap B| = 32, |A \cap C| = 26,$ $|B \cap C| = 43, |A \cap B \cap C| = 20$

- i. How many people like exactly one of these fruits?
- ii. How many people like none of this fruit?

iii. How many people do not like oranges?

c) Let $A = \{1,2,3\}, B = \{a, b\}$ and $C = \{m, n\}$. Find $A \times (B \times C)$ d) Let A, B, C and D be sets. Prove the following:

- i. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- ii. $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$

B8

- a) Determine whether the statement is a tautology, a contingency or a contradiction $p \rightarrow (q \rightarrow p)$
- b) Use a truth table to show that $\neg(p \lor q) \lor \neg(p \lor \neg q)$ is equivalent to $\neg p$.
- c) Show that $p \oplus q$ is equivalent to $(p \land \neg q) \lor (\neg p \land q)$ using equivalence laws.
- d) Propositions p and q are defined on the universal set
 U = {quadrilaterals}. Let p be the proposition "x is a square" and q be the proposition "x is a rectangle". If the implication is

^[3, 2, 2, 2, 3, 4, 4]

given as $q \rightarrow p$, then state the converse, inverse and contrapositive in both symbolic form and in words.

- e) Symbolize each of the following statements using quantifiers, predicates and logical connectives. Determine the truth value of the statement and negate it.
- i) For every natural number *x*, there is another natural number *y* such that their sum is equal to 1.
- ii) All mathematicians wear glasses.

(Hint: Define a predicate and the domain).

[3, 3, 4, 6, 2, 2]

END OF PAPER