

"Investing in Africa's Future" FACULTY OF HEALTH SCIENCES

FIRST SEMESTER EXAMINATIONS

COURSE CODE: NSPH541

COURSE TITLE: HEALTH STATISTICS

DATE: MAY 2022

TIME: 3 hours

INSTRUCTIONS

Answer ALLQuestions i **Section A**and ANY **3**questions from **Section B**

The mark allocation for each question is indicated and the of the question

Credit will be given for logical, systematic and neat presentations.

SECTION A

QUESTION 1: 20 marks

- a) State the **four** main factors that influence sample size calculation in analytic studies.
 [4]
- b) State the **three** methods that are used to assess for significance in hypothesis testing and describe how a decision is made for each method stated. [6]
- c) In public health studies, researchers often use secondary data to answer public health research questions
 - i. Define what is meant by secondary data?

[1]

ii. State two sources of secondary data

[2]

iii. State **two** advantages of using secondary data

[2]

iv. State **two** disadvantages of using secondary data

[2]

d) State **three** differences between logistic regression and linear regression [3]

QUESTION 2: 20 marks

A clinician wishes to assess the effect of hematocrit (htc) on patients' systolic blood pressure (bpsystol). The clinician consulted an MPH student on what analysis to perform and was advised to use a simple linear regression. Below are the results from the analysis performed by the clinician using STATA.

Source	SS	df	MS	Numbe	er of obs	=	10,351
1.7 1.1 1	A TOTAL TOTAL PROPERTY.	1002		F(1,	10349)	=	97.62
Model	52654.8121	1	52654.812	1 Prob	> F	=	0.0000
Residual	5582015.21	10,349	539.37725	5 R-squ	ıared	=	0.0093
				- Adj F	≀-squared	=	0.0092
Total	5634670.03	10,350	544.41256	3 Root	MSE	=	23.224
bpsystol	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
hct	.6139705	.0621405	9.88	0.000	.49216	31	.7357779
cons	105.1032	2.619028	40.13	0.000	99.969	39	110.237

a) Write down the simple linear regression equation and interpret the intercept and slope coefficients. [1+2+2=5]

- b) Comment on the variability of hematocrit (htc) in explaining the patients' systolic blood pressure (bpsystol) based on the model results. [2]
- c) Predict the systolic blood pressure (bpsystol) of the person with a hematocrit (htc) value of 47.98 [2]

The clinician had information on patients' weight and sex so the researcher went on and fitted a multiple linear regression model after fitting the simple linear regression model. The results of the analysis are shown below:

. regress bpsystol hct weight i.sex

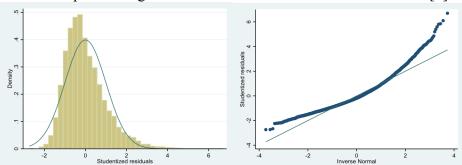
Source	SS	df	MS	Numbe	er of obs	=	10,351
10 10 1 1 E			100 100 000	F(3,	10347)	=	314.57
Model	470967.591	3	156989.19	7 Prob	> F	=	0.0000
Residual	5163702.44	10,347	499.05310	1 R-squ	uared	=	0.0836
				- Adj F	R-squared	=	0.0833
Total	5634670.03	10,350	544.41256	3 Root	MSE	=	22.339
bpsystol	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
hct	.2359879	.0719284	3.28	0.001	.094994	3	.3769815
weight	.446269	.0155385	28.72	0.000	.415810	5	.4767274
sex							
Male	0	(base)					
Female	2.303953	.5458999	4.22	0.000	1.233884	4	3.374023
cons	87.67776	3.280188	26.73	0.000	81.24790	5	94.10756

- d) State the advantage (s) of fitting a multiple linear regression over simple linear regression. [2]
- e) Interpret the sex coefficient fully

f) Determine if weight and sex are possible confounders of the relationship between systolic blood pressure (bpsystol) and haematocrit (htc) for these patients [2]

[3]

- g) The following diagnostic assessments were done on the adjusted model.
- i. State the assumption being tested and comment if valid or not [2]


 hettest

 Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

 Ho: Constant variance

Variables: fitted values of bpsystol

chi2(1) = 1.43Prob > chi2 = 0.2320 ii. State the assumption being tested and comment if valid or not

SECTION B

QUESTION 3: 20 marks

iii.

a) A researcher from the cancer registry in Zimbabwe set to conduct a study to determine if smoking was a risk factor for lung cancer. A sample size of 160 record reviews was retrieved from the registry and the data is summarised in the following 2x2 table:

	Lung		
Current Smoker	Yes	No	Totals
Yes	a	30	b
No	25	c	45
Totals	d	50	160

i. Fill in the missing values in the results table

[2]

[1]

- ii. State the appropriate measures of association for this study
 - Calculate the measure of association

[2]

[2]

- iv. Using a level of significance (α) of 0.05, determine if smoking is significantly associated with having lung cancer. [5]
- b) A study on the low birth weight of babies born at Hospital A collected the following data.

Contains data from https://www.stata-press.com/data/r16/lbw.dta obs: 189 Hosmer & Lemeshow data vars: 11 15 Jan 2018 05:01

	:	storage display	valı	ue variable name	type 1	format label	- variable label
id	int	%8.0g		identification	code low	byte	
%8.0g		birthweight<250	og age	byte	%8.0g	age	
of mother lwt		int %8.	9g	weigh	t at last m	enstrual period	
race	byte	%8.0g ra	ce	race smoke	byte	%9.0g	
smoke sm	oked dur	ing pregnancy pt	l	byte %8	.0g	•	
premature lab	or histo	ry (count) ht		byte %8.0g	•	has history	
of hypertensi	on ui	byte	%8.0o	1	presence,	uterine	
irritability during 1st tr		byte	%8.0g	nu		its to physician	

The researcher aimed to determine the factors associated with low birth weight at this hospital and the following analysis was performed.

. logistic low lwt i.race i.smoke ht, base

Logistic regression 189	Number of obs	=
26.40	LR chi2(5)	=
0.0001	Prob > chi2	=
Log likelihood = -104.13523 0.1125	Pseudo R2	=

low	Odds Ratio [nterval]	Std. Err.	Z	P> z	[95% Conf.
lwt	Ø.009 .969	.9822801 92812 .995453	. 0066 33	765	-2.63
race white		(1)			
black	3.622729 10.06977	(base) 1.889602	2.47	0.014	1.303324
other	2.570489 5.89333	1.088183	2.23	0.026	1.121168
smoke nonsmoker					
	1	(base)			
smoker	2.919794 6.239948	1.13138	2.77	0.006	1.366229
ht	5.743724 22.23898	3.967166	2.53	0.011	1.483448
_cons		1.309925	0.38	0.706	. 2315665

- i. State the differences between this type of analysis and linear regression [3]
- ii. Interpret the effect of smoking on childbirth weight [3]
- iii. Interpret the effect of weight at last mensural period (lwt) on child-birth weight [2]
- iv. State what additional analysis the researcher could have done. [Hint: Link your answer to the variables in the dataset] [2]

QUESTION 4: 20 marks

An MPH student at Africa University set to determine the effect of two drugs for the treatment of peptic ulcers. Previous studies reported that the percentage of ulcers healed by the pirenzepine drug was 65% while the trithiozone drug healed 55% of ulcers.

- a) How many participants would be required for a randomised trial to have 80% power of detecting this difference between the two drugs (65% and 55%) at the 0.05 (twotailed) two-tailed level of significance? [6]
- b) How many participants would be required to increase the power to 90%? [3]
- c) With reference to the sample size in (a) and (b), comment on the relationship between sample size and power of the study [3]
- d) A new study was published and reported that the healing rate for trithiozone was 70% and the healing rate due to pirenzepine was 20% higher. The study considered recalculating the sample size using the new information. What sample size would be required to detect an increase of 20% in the healing rate at a 5% level of significance and 80% power?
- e) Taking into account the 10% attrition rate, what is the final sample size the student should use from (d)? [3]

QUESTION 5: 20 marks

- a) Describe type I and type II errors, and how they are related to the power and significance level of a study. [5]
- b) Describe the steps for hypothesis testing giving examples to explain your points [10]
- c) State the two types of hypothesis a researcher can perform [2]
- d) A researcher carried out a hypothesis testing and got a test statistic value of which was greater than the critical value. What decision should the researcher make? [3]

QUESTION 6: 20 marks

- a) State **three** differences between linear regression and survival analysis [3]
- b) State one assumption that is made in survival analysis and describes how it is assessed.
 [3]
- c) The following are findings from a hypothetical study on the association between alcohol use and mortality from coronary heart disease among Zimbabwean doctors showing relative risks of death adjusted for age and smoking habits.

Drinking habits	relative risk	(95% confidence interval)
Non-drinker	1	
Occasional drinker	0.65	0.55-0.75
<2 drinks daily	0.76 0.98	0.70-0.82 0.91-1.05

≥2 drinks daily	1.56	1.26-1.86
Ex-drinker		

i. What is the study design conducted

[2]

ii. Interpret the results fully

[8]

iii. The authors adjusted for age and smoking habits. Explain the epidemiological concept this study was trying to account for how to outline the effects of not accounting for such issues in epidemiological studies [4]