

"Investing in Africa's future" COLLEGE OF BUSINESS PEACE LEADERSHIP AND GOVERNANCE (CBPLG) DISCRETE STRUCTURES – CSC 102

END OF FIRST SEMESTER EXAMINATIONS MAY/JUNE 2020 LECTURER: Mr. Weston Govere DURATION: 3 HOURS

INSTRUCTIONS

Answer **ANY ONE** of the given questions. Each question carry **50** marks.

Show all working on your answer sheet.

The marks allocated to **each** question are shown at the end of the part question.

Question 1

- a) Suppose that Smartphone A has 256 MB RAM and 32 GB ROM, and the resolution of its camera is 8 MP; Smartphone B has 288 MB RAM and 64 GB ROM, and the resolution of its camera is 4 MP; and Smartphone C has 128 MB RAM and 32 GB ROM, and the resolution of its camera is 5 MP. Determine the truth value of each of these propositions.
 - i) Smartphone B has the most RAM of these three smartphones.
 - ii) Smartphone C has more ROM or a higher resolution camera than Smartphone B.
 - iii) Smartphone B has more RAM, more ROM, and a higher resolution camera than Smartphone A.
 - iv) If Smartphone B has more RAM and more ROM than Smartphone C, then it also has a higher resolution camera.
 - v) Smartphone A has more RAM than Smartphone B if and only if Smartphone B has more RAM than Smartphone A.
 - [5]
- b) Find the conjunction of the propositions p and q where p is the proposition "Rebecca's PC has more than 16 GB free hard disk space" and q is the proposition "The processor in Rebecca's PC runs faster than 1 GHz." [3]
- c) Determine whether the statement is a tautology, a contingency or a contradiction $p \rightarrow (q \rightarrow p)$ [3]
- d)
- i) Translate the following statement into symbolic form:
 "If James does not quit his job then Mary will not get any money and James' family will be happy" [2]
- ii) Let P = I cheat; Q = I will get caught; R = I will write an examination and S = I will fail. Translate $(R \land P) \rightarrow (Q \rightarrow S)$ into simple English [2]
- e) Show that $p \oplus q$ is equivalent to $(p \land \neg q) \lor (\neg p \land q)$. [4]
- f) Propositions p and q are defined on the universal set

 $U = \{quadrilaterals\}$. Let p be the proposition "x is a square" and q be the proposition "x is a rectangle". If the implication is given as $q \rightarrow p$, then state the converse, inverse and contrapositive in words. [3]

- g) For each of these pairs of sets, determine whether the first is a subset of the second, the second is a subset of the first, or neither is a subset of the other.
 - i) the set of airline flights from New York to New Delhi, [2]
 - ii) the set of nonstop airline flights from New York to New Delhi [2]
 - iii) the set of people who speak English, the set of people who speak Chinese [2]
 - iv) the set of flying squirrels, the set of living creatures that can fly [2]

h)

- i) Prove that for any set $A, A \cup \emptyset = A$. [3]
- ii) For all sets A, B and C prove that if $A \subseteq B$ and $B \subseteq C$ then $A \subseteq C$.

[3]

iii) Let *A*, *B* and *C* be sets. Prove that

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
[3]

- i) In a survey of 120 people, it was found out that: 65 read Daily News; 45 read Newsday; 42 read Herald; 20 read both Daily News and Newsday; 25 read both Daily News and Herald; 15 read both Newsday and Herald and 8 read all three newspapers. Find the number of people who read exactly one newspaper. [4]
- j) Suppose that $A = \{a, b, c, d\}$ and $B = \{1, 2\}$, write down the following sets:

$$iv) A \times B$$
 [2]

v)
$$P(B)$$
 [2]

k) Let U consist of all student residents in Varsity Hall, N the set of all student residents who attended netball practice on Thursday night, T the set of all student residents who watched TV on Thursday night and S the set of all student residents who studied maths on Thursday night.

Express in terms of N, T, S, and the appropriate set operators:

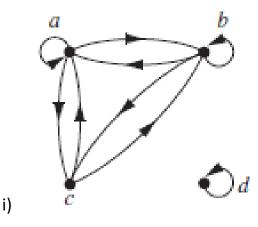
- i) The set of all student residents who did not attend netball practice on Thursday night. [1]
- ii) The set of all student residents who, on Thursday night, studied maths but did not attend netball practice. [2]

Question 2

a) Determine whether the relation R on the set of all people is reflexive, symmetric, antisymmetric, and/or transitive, where $(a, b) \in R$ if and only if

i) <i>a</i> is taller than <i>b</i> .	[2]
ii) a and b were born on the same day.	[2]
iii) <i>a</i> has the same first name as <i>b</i> .	[2]
iv) <i>a</i> and <i>b</i> have a common grandparent.	[2]

- b) Consider these relations on the set of integers:
 - i) $R_1 = \{(a, b) \mid a \le b\},\$ ii) $R_2 = \{(a, b) \mid a > b\},\$ iii) $R_3 = \{(a, b) \mid a = b \text{ or } a = -b\},\$ iv) $R = \{(a, b) \mid a = b\},\$ v) $R = \{(a, b) \mid a = b + 1\},\$ vi) $R = \{(a, b) \mid a + b \le 3\}.\$
 - Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1, -1), and (2, 2)? [9]
- c) List the ordered pairs in the relations represented by the directed graphs.



[3]

d) Let *R* be the relation with ordered pairs (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22). Here each pair consists of a graduate student and this student's age. Specify a function determined by this relation.

e) Show that

i)
$$f(x) = 5x + 2$$
 is surjective for all $x \in \mathbb{R}$. [3]

ii) the function
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \frac{(x+1)^3}{(x-1)^3}$ is bijective.
[4]

f)

- i) Data stored on a computer disk or transmitted over a data network are usually represented as a string of bytes. Each byte is made up of 8 bits. How many bytes are required to encode 100 bits of data? [3]
- ii) In asynchronous transfer mode (ATM) (a communications protocol used on backbone networks), data are organized into cells of 53 bytes. How many ATM cells can be transmitted in 1 minute over a connection that transmits data at the rate of 500 kilobits per second?

[4]

g) Given
$$f(x) = \frac{2x+1}{2-3x}$$
 where $\in \mathbb{R}$; $x \neq k$.
iii) State the value of k [1]
iv) find $f^{-1}(x)$ and clearly state the domain. [3]

- h) If f(x) = 5x 5: $x \in \mathbb{R}$ and $g(x) = \frac{1}{2x+1}$: $x \in \mathbb{R}$; $x \neq \frac{1}{2}$, show that $f \circ g \neq g \circ f$ [3]
- i) Prove that if $f: A \to B$, $g: B \to C$ and $gof: A \to C$ is onto, then g is onto *C*. [4]

Question 3

a) Prove by an appropriate method that for all integers n:

$$2 + 4 + 6 + \dots + 2n = n(n+1)$$
[4]

- b) Show that at least four of any 22 days must fall on the same day of the week.
- c) Show that the statement "Every positive integer is the sum of the squares of two integers" is false. [3]
- d) What is wrong with this famous supposed "proof" that 1 = 2?

<u>"Proof:</u>" We use these steps, where *a* and *b* are two equal positive integers.

Step	Reason
1. $a = b$	Given
2. $a^2 = ab$	Multiply both sides of (1) by a
3. $a^2 - b^2 = ab - b^2$	Subtract b^2 from both sides of (2)
4. $(a-b)(a+b) = b(a-b)$	Factor both sides of (3)
5. $a + b = b$	Divide both sides of (4) by $a - b$
6. $2b = b$	Replace <i>a</i> by <i>b</i> in (5) because $a = b$ and
	simplify
7. 2 = 1	Divide both sides of (6) by b
	[3]

- e) For each of the following prove using both the direct proof and contrapositive proof:
 - i) If n is an even integer then 3n + 5 is odd. [3]
 - ii) Let *n* be an integer. If $n^2 + 5$ is odd then *n* is even. [3]

f) Show that these statements about the integer n are equivalent:

 $p_1: n \text{ is even.}$ $p_2: n - 1 \text{ is odd.}$ $p_3: n^2 \text{ is even.}$ [4]

- g) What is the probability that Abby, Barry, and Sylvia win the first, second, and third prizes, respectively, in a drawing if 200 people enter a contest and
 - i) no one can win more than one prize. [2]
 - ii) winning more than one prize is allowed. [3]
- h) When a car owner needs her car serviced, she phones one of the three garages A, B or C. Of her phone calls, 30% are to garage A, 10% to B and 60% to C. The percentages of occasions that when the garage is phoned they can take the car in on the day of phoning are 20% for A, 6% for B and 9% for C.
 - i) Draw a tree diagram to represent the above information. [3]
 - ii) Find the probability that the garage phoned will be able to take the car in on the day of phoning [3]
 - iii)Given that the car owner phones a garage and the garage can take in on that day, find the probability that she phoned garage B. [3]
- i) Show that if X and Y are independent random variables on a sample space S, then E(XY) = E(X)E(Y). [5]
- j) If *X* is the r.v the random number on a number a biased die. The probability mass function (p.m.f) of *X* is as shown

X	1	2	3	4	5	6
P(X=x)	1/6	1/6	1/5	а	1/5	1/6

Find

iv) the value of a	[2]
v) E(X)	[2]

vi) $E(X^2)$)	[2]
vii)	Var(X)	[2]

END OF EXAMINATION PAPER