

"Investing in Africa's Future"

COLLEGE OF HEALTH, AGRICULTURE & NATURAL SCIENCES DEPARTMENT OF HEALTH SCIENCES BACHELOR OF MEDICAL LABORATORY SCIENCES HONOURS SLS 105 GENETICS & MOLECULAR BIOLOGY APRIL/MAY 2019 EXAMINATIONS

LECTURER: Dr E. MUGOMERI

DURATION: 3 HOURS

INSTRUCTIONS
The mark allocation for each question is indicated at the end of the question
Credit will be given for logical, systematic and neat presentations.

Section A comprises Multiple Choice Questions and is compulsory. Total marks are 20.

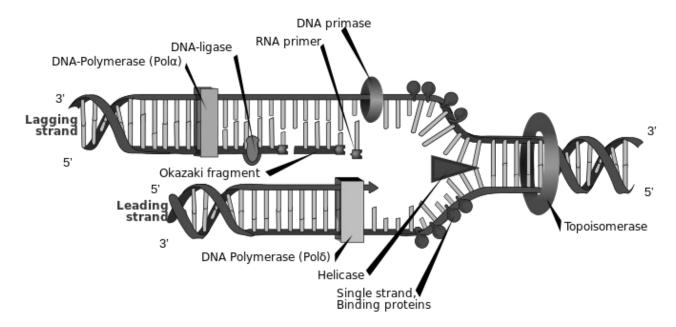
- a) Answer ALL questions.
- b) Each correct response for components is allocated 1 mark.
- c) Indicate by circling correct answer on this question paper.
- 1. Gel electrophoresis separates DNA molecules on the basis of their
 - A. Ability to bind to mRNA
 - **B.** Size
 - C. Solubility in water
 - **D.** Solubility in agarose gel
 - **E.** Secondary structure and purity
- 2. What are restriction enzymes?
 - A. Enzymes that only work in restricted areas of the cell
 - **B.** Enzymes that are specific for plasmids
 - C. Enzymes that cut introns out of pre-mRNA
 - **D.** Enzymes cut DNA molecules at specific recognition sites
 - E. Enzymes that stop transcription
- **3.** Which of the following best describes sticky ends?
 - **A.** Sticky ends are DNA fragments that carry a higher charge than normal after they have been cleaved by restriction enzymes.
 - **B.** Sticky ends are DNA fragments cleaved by a restriction enzyme so that one strand is longer than the other.
 - **C.** Sticky ends are DNA fragments cleaved by a restriction enzyme so that both strands are the same length
 - **D.** Sticky ends are DNA fragments that attract a carbohydrate molecule to one end after being cleaved by a restriction enzyme.
- **4.** What are introns?
 - A. Introns are coding regions of DNA molecules
 - **B.** Introns are enzymes used to splice DNA
 - **C.** Introns are noncoding regions of DNA molecules
 - **D.** Introns are repeating segments of DNA that occur at the tips of most chromosomes
- **5.** What is the true relationship between introns and exons?
 - A. Introns often comprise more of the DNA molecule than exons
 - **B.** Introns are found in eukaryotes; prokaryotes have only exons
 - **C.** There appears to be an evolutionary relationship in intron-exon organization
 - **D.** All of the above
 - E. None of the above

	D.	There appears to be an evolutionary relationship in intron-exon organization All of the above None of the above
7.	. Interphase comprises which of the following stages?	
	B. C. D. E.	G1 and G2 G1 and M G1, G2 and M G1, S and G2 All of the above None of the above
8.	A.	ominant allele is the most abundant in the population True False
9.	A.	ost sex-linked traits are recessive True False
10.	A. B. C. D. E.	
11.	Oka A. B.	nich of the following enzymes re-anneals semi-conservative DNA strands and joins azaki fragments of the lagging strand? DNA helicase DNA polymerase Topoisomerase

6. What is the true relationship between introns and exons?

A. Introns often comprise more of the DNA molecule than exonsB. Introns are found in eukaryotes; prokaryotes have only exons

12. Which blotting technique can detect the presence of a specific protein from a cell?


D. DNA ligase**E.** Primase

- **A.** Southern
- B. Northern
- C. Western
- **D.** Eastern
- 13. What blotting technique can be used for specific detection of RNA molecules?
 - A. Southern
 - B. Northern
 - C. Western
 - D. Eastern
- **14.** cDNA synthesis is catalyzed by which enzyme?
 - A. Dideoxyribonuclease
 - **B.** Integrase
 - **C.** Reverse transcriptase
 - **D.** Restriction endonuclease
 - E. All of the above
 - **F.** None of the above
- 15. What is the primary purpose of a thermocycler?
 - A. Dideoxy terminator sequencing
 - **B.** Polymerase chain reactions
 - **C.** DNA footprinting
 - D. Colony hybridization
 - **E.** All of the above
 - F. None of the above
- 16. Southern blotting
 - **A.** Is a blotting isolation technique for DNA molecules
 - **B.** Is a blotting isolation technique for RNA molecules
 - **C.** Is a blotting isolation technique for proteins
 - **D.** Is a blotting isolation technique where molecules migrate southwards of the recovery membrane
 - E. All of the above
 - **F.** None of the above
- 17. In genetic engineering a chimera is
 - **A.** created by joining DNA fragments from unrelated genes
 - **B.** created by joining specific fragments that enable a gene to encode isomers
 - **C.** an enzyme that links DNA molecules
 - D. a virus that infects bacteria
 - E. all of the above
 - **F.** none of the above

- **18.** In which way is recombinant DNA technology playing an important role in human health?
 - **A.** Helping to determine the molecular causes of disease
 - **B.** Producing effective means to express proteins such as insulin and growth hormone
 - **C.** Forensic medicine
 - **D.** All of the above
 - **E.** None of the above
- 19. DNA that assembled using processed mRNA molecules as template is
 - **A.** rDNA
 - B. mDNA
 - **C.** cDNA
 - **D.** all of the above
 - **E.** none of the above
- **20.** What is the molecular technique in which a DNA sequence flanked by two oligonucleotide primers can be amplified?
 - A. Southern blotting
 - **B.** Northern blotting
 - C. Western blotting
 - **D.** Polymerase chain reaction
 - **E.** All of the above
 - **F.** None of the above

SECTION B: Answer all questions (35 Marks)

1. Write short notes on DNA replication using the diagram below as aid:(15).

- 2. Using a diagrams, illustrate the difference between a nucleoside and a nucleotide(10)
- 3. Concerning Mendelian inheritance explain the meanings of the following terms (10)
 - (i) Allele (2)
 - (ii) Homozygous(2)
 - (iii) Heterozygous(2)
 - (iv) Genotype(2)
 - (v) Phenotype (2)

SECTION C: Answer any three questions (45 Marks)

- 1. Write short notes distinguishing the following types of mutation:
 - a. Missense (2)
 - b. Duplication (2)
 - c. Deletion (2)
 - d. Insertion (2)
 - e. Frameshift (3)
 - f. Nonsense (2)
 - g. Repeat expansion (2)
- 2. Explain the genetic defect associated with the following disorders
 - a. Cystic fibrosis (2)
 - b. Sickle cell anaemia (2)
 - c. Tay-sachs disease (2)
 - d. Phenyketonuria (2)
 - e. Haemophilia (3)
 - f. Huntington's disease (2)
 - g. Muscular dystrophy (2)
- 3. Describe in detail how mitosis differs from meiosis. (15)
- 4. Write an essay describing the process of protein synthesis in detail. (15)

TOTAL 100 MARKS