

College of Business Peace Leadership and Governance

CSC 201 DISCRETE MATHEMATICS

END OF SEMESTER EXAMINATIONS

NOVEMBER/DECEMBER 2018

LECTURER: Mr. Luke Marwa

DURATION: (3 HRS)

INSTRUCTIONS

1. Answer all questions.

2. Total marks 100

Using laws of equivalence. Show that

$$(p \land q) \rightarrow q$$
 is a tautology

$$\neg (q \to p) \lor (p \land q) \equiv q$$

 $\neg (p \leftrightarrow q) \equiv (p \leftrightarrow \neg q)$

$$\neg (p \leftrightarrow q) \equiv (p \leftrightarrow \neg q)$$

$$P \wedge (p \vee q) \equiv p$$

(5+5+5+5+5 marks)

Question 2

Study the following graph

a) Represent the graph as:

i.	Adjacency matrix	(6 marks)
ii.	Adjacency list	(6 marks)

b) What is the degree of the graph (3 marks)

Question 3

- a) Write a recursive program to compute the Fibonacci sequence
- b) Write a program to determine whether a number is prime or not
- c) Write a recursive program that computes the factorial of the number n
- d) Write a program that finds the maximum of three numbers a,b and c

(5+5+5+5 marks)

Question 4

Suppose a = 3880 and b = 7312.

(a) Express a and b as products of primes.

(3 marks)

(b) Find gcd(a, b) and lcm(a, b).

(3 marks)

(c) Verify that lcm(a, b) = |ab|/gcd(a, b).

(4 marks)

Question 5

Use the Euclidean algorithm to find the Greatest Common Divisor (gcd)

- a) gcd (12, 22).
- b) gcd (4411, 301).
- c) gcd (1001,1331).
- d) gcd (12345,54321).
- e) gcd (1000, 5040).

f) gcd (7888,4060).

(20 marks)

g)Proof that: $(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$

p	q	r	$p \rightarrow r$	$q \rightarrow r$	$(p \rightarrow r) \vee (q \rightarrow r)$	$p \wedge q$	$(p \land q) \rightarrow r$
0	0	0					
0	0	1					
0	» 1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

(15 marks)

9