

"Investing in Africa's Future"

# COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE REM 500 RESESEARCH METHODS

#### END OF FIRST SEMESTER EXAMINATIONS

**NOVEMBER 2018** 

LECTURER(S): MUNGURE S & CHIKAKA E

3HRS

#### **INSTRUCTIONS**

Answer ALL Questions in Section A and Any TWO (2) Questions from Section B

The mark allocation for each question is indicated at the end of the question

Credit will be given for logical, systematic and neat presentations

## SECTION A: compulsory (40%)

### Question 1

1 A farmer went looking for mangoes for his fifteen orchard trees orchard and made the following records; 0; 4; 0; 1; 2; 3; 4; 2; 0; 5; 4; 5; 6; 0; 7

Find the

| STORY THE RESERVE |                                                                                                                                                                                                                      | Security of the security of |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| a)<br>b) =        | Mode<br>median                                                                                                                                                                                                       | [2]                         |
| c)                | mean                                                                                                                                                                                                                 | [2]                         |
| d)<br>e)          | Calculate the variance and the standard deviation and standard error of this data Here are the scores attained by the students in the recent in-class exam 18; 100;27; 52; 85; 61; 68; 82; 54; 87; 91; 34;78; 93; 59 | [4]<br>[10]                 |
| i.<br>ii.         | Establish the lower quartile, median, and upper quartile Identify skewness of the data                                                                                                                               | [6]<br>[3]                  |
| iii<br>f) Ex      |                                                                                                                                                                                                                      | [5]<br>[5]<br>[4]           |
| g) Us             | sing data in (e) illustrate the relevance of a bar graph in Quantitative research                                                                                                                                    | [4]                         |
| ECT               | TION B Answer Any TWO (2) Questions (60%)                                                                                                                                                                            |                             |
| 2.                | Demonstrate and explain in detail the differences between                                                                                                                                                            |                             |
|                   | a. Qualitative and quantitative research                                                                                                                                                                             | [10]                        |
|                   | b. Systematic and stratified sampling                                                                                                                                                                                | [10]                        |
|                   | c. Descriptive and inferential statistics                                                                                                                                                                            | [10]                        |
| 3.                | Theory and literature review provide the necessary foundation for developing coherent                                                                                                                                |                             |
|                   | research. How exactly do these two help the researcher?                                                                                                                                                              | [30]                        |
| 4.                | a. Describe the evolution of research ethics taking account of the major milestones since                                                                                                                            |                             |
|                   | the end of World War 2.                                                                                                                                                                                              | [15]                        |
|                   | b. Explain how you would observe the main principles of research ethics in a res                                                                                                                                     | search of                   |
|                   | your choice.                                                                                                                                                                                                         | [15]                        |
| 5.                | Explain the following terms as they relate to the practice of research (you can also                                                                                                                                 | 0                           |
|                   | illustrate your response). Your explanations have to be thorough and exhaustive.                                                                                                                                     |                             |
| a.                | Population                                                                                                                                                                                                           | [5]                         |
| b.                | Random sample                                                                                                                                                                                                        | [5]                         |
| c.                | Hawthorne effect                                                                                                                                                                                                     | [5]                         |
| d.                | Paradigms                                                                                                                                                                                                            | [5]                         |
| e.                | Cultural competence                                                                                                                                                                                                  | [5]                         |
| f.                | Randomisation                                                                                                                                                                                                        | [5]                         |

Standard Error =
$$SE_{\overline{X}} = \frac{s}{\sqrt{n}}$$
  $P(K \leq x \mid n, p) = \sum_{k=0}^{\Delta} \binom{n}{k} p^k q^{n-k}$ 

Variance = 
$$S_{\perp}^2 = \frac{\sum (x - \overline{X})^2}{n-1} = S_{2}^2 = \frac{\sum (x^2 - \frac{(\sum x)^2}{n})^2}{n-1}$$
  $Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$ 

$$t_1 = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}}$$
 
$$t^2 = \frac{\overline{X} - \overline{X}_2}{S_p \sqrt{(1/n_1 + 1/n_2)}}$$

A 100 (1-  $\alpha$ ) % confidence interval (CI) for  $\mu_1 - \mu_2$  is given by:

$$\begin{split} &(\overline{x}_{1} - \overline{x}_{2}) \pm t_{crit} \times \sqrt{\frac{s_{p}^{2} + s_{p}^{2}}{n_{1}} + \frac{s_{p}^{2}}{n_{2}}} \\ &t = \frac{\left(\hat{p}_{1} - \hat{p}_{2}\right) - \left(p_{1} - p_{2}\right)}{\sqrt{\frac{\overline{p}\overline{q}}{n_{1}} + \frac{\overline{p}\overline{q}}{n_{2}}}} \text{ where } \overline{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}} \\ &t = \frac{\left(\overline{x}_{1} - \overline{x}_{2}\right) - \left(\mu_{1} - \mu_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{4}} + \frac{s_{p}^{2}}{n_{2}}}} \end{split}$$

$$S^{2} p = \frac{(n_{1} - 1)S_{1}^{2} + (n_{1} - 1)S_{2}^{2}}{n_{1} + n^{2} - 2}$$

$$r = \frac{n\sum xy - \sum x\sum y}{\sqrt{[n(\sum x^2) - (\sum x)^2][n(\sum y^2) - (\sum y)^2]}}$$
 95% CI for a proportion =  $p \pm 1.96\sqrt{\frac{p(1-p)}{n}}$ 

95% CI for a mean = 
$$\overline{X} \pm 1.96$$
 Ó/Vn  $t = r \frac{\sqrt{(n-2)}}{\sqrt{(1-r^2)}}$   $r_1 = \frac{\sum (x-\overline{X})(y-\overline{Y})}{\sqrt{[\sum (x-\overline{X})^2 \sum (y-\overline{Y})^2]}}$ 

$$\boldsymbol{b}_{1} = \frac{\sum (x - \overline{X})(y - \overline{Y})}{\sum (x - \overline{X})^{2}} \qquad \boldsymbol{b}_{2} = \frac{\sum xy - \frac{(\sum x)(\sum y)}{n}}{\sum x^{2} - \frac{(\sum x)^{2}}{n}} \qquad \boldsymbol{b}_{0} = \overline{Y} - \boldsymbol{b}_{1}\overline{X} \qquad \chi^{2} = \sum \frac{(\boldsymbol{O} - \boldsymbol{E})^{2}}{E}$$

$$SE_b = \frac{S}{\sqrt{\sum (x-\overline{X})^2}}$$
 where  $S^2 = \frac{\sum (y-\overline{Y})^2 - b^2 \sum (x-\overline{X})^2}{n-2}$   $\chi^2 = \sum \frac{(+0-E+-0.5)^2}{E}$ 

$$n_{1} = \frac{\left[z_{\alpha/2}\sqrt{(r+1)\overline{p}q} + z_{1-\beta}\sqrt{rp_{1}q_{1} + p_{2}q_{2}}\right]^{2}}{r(p_{1}-p_{2})^{2}} \qquad n_{2} = r \times n_{1}$$

95% CI for OR = e 
$$ln(OR)\pm 1.96 \cdot \sqrt{\frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}}$$

95% CI for RR = e