

"Investing in Africa's Future"

FACULTY OF MANAGEMENT AND

ADMINISTRATION

COURSE TITLE: MMS402 - Production and Operations Management

SEMESTER 1: Final Examination - Conventional

DATE: November 2013

LECTURER: Dr. S. Murairwa

TIME: 3 Hours

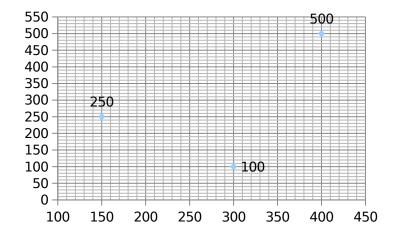
INSTRUCTIONS

Answer all questions in Section A and any three (3) questions in section B

Start each question on a new page in your answer booklet.

The marks allocated to **each** question are shown at the end of the section.

Show all your workings.


Credit will be given for logical, systematic and neat presentations.

SECTION A: ANSWER ALL QUESTIONS

1. Define the following Production and Operations Management terms:

(a)	Profit	[2 Marks]
(b)	Break even analysis	[2 Marks]
(c)	Continuous inventory control system	[2 Marks]
(d)	Quality	[2 Marks]
(e)	Production	[2 Marks]

- 2. With a well labelled diagram, explain the production system. Identify the transformational processes of manufacturing and transportation [12 Marks]
- 3. Explain the main differences between product and service [4 Marks]
- 4. A company is planning to construct a warehouse that is to be served by suppliers A, B and C. The locations of the three suppliers and annual number of truck carriers that will serve the warehouse are shown below.

- a) Use the appropriate technique to determine coordinates for the best site for the company's warehouse [8 Marks]
- b) State three qualitative and three quantitative factors for considering when locating a manufacturing facility [6 Marks]

SECTION B: ANSWER ANY THREE (3) QUESTIONS

- 5. Quality is the totality of features and characteristics of a product or service that bears on its ability to satisfy given needs.
 - (a) Draw and explain the Deming Wheel [4 Marks]
 - **(b)** Draw and explain the meaning of quality as a final perspective [6 Marks]
 - X = 28.5 and (c) A production process sampled 30 times with a sample size of 8, gave $\overline{R} = 1.6.$

i) Construct R-chart and \overline{X} chart

[6 Marks]

ii) Explain how you would use both charts to determine the state of the process

[4

Marks]

6. You are given the estimated annual demand of 20000 gallons of paint, an annual carrying cost of \$0.65 per gallon and ordering cost of \$150 per order.

 $Q^{i} = \sqrt{\frac{2DC_{o}}{C_{h}}}$

a) Show that

[3 Marks]

b) Find the:

o, i ma me.	
i) Optimum order quantity	[2 Marks]
ii) Total cost	[2 Marks]
iii) Number of orders per year	[2 Marks]
iv) Order cycle time	[2 Marks]
c) State the objective of the economic	order quantity model [2 Marks]
d) State the objectives of the facility la	ayout decisions [7 Marks]

7. A computer software firm has experienced the following demand for its software package:

Demand										7
	70	79	67	80	63	73	62	77	69	0

- (a) Outline the steps of the forecasting process
 (b) Develop an exponential smoothing forecast using α = 0.40
 (c) Forecast the demand for period 11
 (d) Use the same demand data to fit the linear trend model
 (e) Forecast the series for periods 11 and 19
 [6 Marks]
 [6 Marks]
 [7 Marks]
 [8 Marks]
 [9 Marks]
- 8. Strategic decisions in operations:
 - a) State and explain the product and service operations strategies
 b) Explain the processes and technology production strategies
 c) With examples, state the measures of productivity
 [6 Marks]
 [6 Marks]

The end of paper

Additional information

(1) Model:
$$F_{t+1} = \alpha D_t + (1-\alpha) F_t$$

(2) Model:
$$AF_{t+1} = F_{t+1} + T_{t+1}$$

(3) Model:
$$T_{t+1} = \beta (F_{t+1} - F_t) + (1 - \beta)T_t$$

(4) Formula Capacity utilization rate =
$$\frac{\text{Capacity used}}{\text{Best operating level}}$$

(5) Quality table

Sample Size	Factors of x-chart	Factors of R-Chart		
n	A2	D3	D4	
2	1.88	0	3.267	
3	1.023	0	2.574	
4	0.729	0	2.282	
5	0.577	0	2.114	
6	0.483	0	2.004	
7	0.419	0.076	1.924	
8	0.373	0.136	1.864	
9	0.337	0.184	1.816	
10	0.308	0.223	1.777	

X bar chart

R chart

$$EV(x) = \sum_{i=1}^{n} p(x_i) x_i$$

$$UCL = \overline{\overline{X}} + z \,\sigma_{\overline{X}} \qquad UCL = D_4 \,\overline{R}$$

$$UCL = D_{\iota} \overline{R}$$

$$LCL = \overline{\overline{X}} - z \,\sigma_{\overline{X}} \qquad LCL = D_3 \,\overline{R}$$

$$LCL = D_3 \overline{R}$$

(7) Model:
$$y = a + bx$$
,

$$a = \overline{y} - b\overline{x},$$
 $b = \frac{\sum xy - n\overline{x}\overline{y}}{\sum x^2 - n\overline{x}^2}$

(1) Model
$$: WMA_n = \frac{\sum_{i=1}^n W_i D_i}{n}$$

(8) c = Mean # of defects per unit in the population

$$MA_n = \frac{\sum_{i=1}^n D_i}{n}$$

 $MA_n = \frac{\sum_{i=1}^n D_i}{n}$ (9) p = Percent defect in the population Total # Defects $\frac{LCL}{p} = \sqrt{\frac{\overline{p}(1-\overline{p})}{\text{Total # Defects}}}$ $\frac{C}{p} = \sqrt{\frac{\overline{p}(1-\overline{p})}{\text{Total # Defects}}}$

$$CL \int_{p} \frac{\overline{p}(1-\overline{p})}{\sqrt{1-\overline{p}}} c$$

$$D_{p} = \sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{p}}} C$$

$$\overline{D}_{p} = \sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{p}}} C$$

$$LCL = p - z \sigma_p$$

(10)
$$C_{pk} = Min\left(\frac{\bar{x} - LSL}{3\sigma}, \frac{USL - \bar{x}}{3\sigma}\right)$$
 $C_p = \frac{Tolerance \, Range}{Process \, Range} = \frac{USL - LSL}{6\sigma}$

(11)
$$LFR = Max \left\{ \sum_{i=1}^{n} W_{i} S_{1i}; \sum_{i=1}^{n} W_{i} S_{2i}; \dots \dots; \sum_{i=1}^{n} W_{i} S_{ni} \right\}$$

(12)
$$x = \frac{\sum_{i=1}^{n} x_i W_i}{\sum_{i=1}^{n} W_i}, \quad y = \frac{\sum_{i=1}^{n} y_i W_i}{\sum_{i=1}^{n} W_i}$$

(13)
$$TC = \frac{Q}{2}C_h + \frac{D}{Q}C_o + DC$$

- $(14) Z = v_p c_f vc_v$
 - Fixed Costs (c_f) costs that remain constant regardless of number of units produced.
 - Variable Cost (c_v) unit cost of product.
 - Total variable cost (vc_v) function of volume (v) and variable per-unit cost.