

"Investing in Africa's Future"

FACULTY OF MANAGEMENT AND ADMINISTRATION

COURSE TITLE: MMS 105 MATHEMATICS FOR BUSINESS II-(CONVENTIONAL)

SEMESTER II: FINAL EXAMINATION – NOVEMBER 2013

- LECTURER : MR T MAKAMBWA
- TIME 3 HOURS

INSTRUCTIONS

Answer all Questions in Section A and any three questions from Section B

Total possible mark is 100

Start **each** question on a new page in your answer Booklet.

The marks allocated to **each** question are shown at the end of the section.

Section A (40 Marks)

QUESTION ONE

Differentiate

(a)
$$Y = (2x + 1)^{10}$$

(b)
$$Y = (x^2 + 3x - 5)^3$$

(c)
$$Y = x^{2}(x+5)^{3}$$

(d)
$$Y = x^{5}(4x + 5)^{2}$$

(e) Y =
$$\frac{x^2}{x^2 + 4}$$

[15]

[15]

QUESTION TWO

Integrate the following:

a)	∫30x ⁴ dx
b)	$\int (24+7.2x^{-2}) dx$
	∫0.5/x dx
d)	∫(48x-0.4e ^{-1.4x})dx
e)	∫(65+3 [×]) dx

QUESTION THREE

Given the supply function	
$P = 10 + \sqrt{Q}$ find the price elasticity of supply	
(a) Averaged along an arc between $Q = 100$ and $Q = 105$	
(b) At the point $Q = 100$	[5]

QUESTION FOUR

If the supply equation is $Q = 150 + 5P + 0.1P^2$ Calculate the price elasticity of supply (a) Averaged along an arc between P = 9 and P = 11(b) At the point P = 10 [5]

SECTION B(60 Marks)

Answer any three questions

QUESTION FIVE

- a) Find the consumers' surplus for the demand function $p = 25 x x^2$ when $p_0 = 19$.
- b) The supply function for a commodity is $p = x^2 + 4x + 5$ where x denotes supply. Find the producers' surplus when the price is 10.
- c) The demand and supply functions under pure competition are $p_d = 16 x^2$ and $p_s = 2x^2 + 4$. Find the consumers' surplus and producers' surplus at the market equilibrium price.

[20]

QUESTION SIX

- a) The marginal cost function of manufacturing x units of a commodity is $6 + 10x 6x^2$ Find the total cost and average cost, given that the total cost of producing 1 unit is 15.
- b) The marginal cost function of manufacturing x units of a commodity is $3x^2 2x + 8$. If there is no fixed cost find the total cost and average cost functions.
- c) If the marginal revenue for a commodity is $MR = 9 6x^2 + 2x$, find the total revenue and demand function.

QUESTION SEVEN

a). A school is preparing a trip for 400 students. The company who is providing the transportation has 10 buses of 50 seats each and 8 buses of 40 seats, but only has 9 drivers available. The rental cost for a large bus is \$800 and \$600 for the small bus. Calculate how many buses of each type should be used for the trip for the least possible cost [10]

b) A store wants to liquidate 200 of its shirts and 100 pairs of pants from last season. They have decided to put together two offers, A and B. Offer A is a package of one shirt and a pair of pants which will sell for \$30. Offer B is a package of three shirts and a pair of pants, which will sell for \$50. The store does not want to sell less than 20 packages of Offer A and less than 10 of Offer B. How many packages of each do they have to sell to maximize the money generated from the promotion? [10]

QUESTION EIGHT

- a) Find the general solution of the difference equation $Y_{t+1} 0.95Y_t = 1000$
- b) Find the particular solution, given $Y_5 = 20950$.
- c) Determine whether the system will stabilize and if so ,what the stable value is .Plot the time to stability for t = 0 to 10 in steps of one
- d) Solve the difference equation $3Y_{t+1} + 2Y_t = 44(0.8)^t$ given $Y_0 = 900$.
- e) Show that the solution stabilizes and plot the time path to stability.

[20]

QUESTION NINE

Find the inverse of the matrix A =

$$\begin{bmatrix}
2 & 1 & 1 \\
6 & 5 & -3 \\
4 & -1 & 3
\end{bmatrix}$$

Hence or otherwise solve the equation

$$2x+y+z = 12
6x+5y-3z = 6
4x-y+3z = 5$$
[20]

QUESTION TEN

- **1.** For each of the differential equations below (i) derive the definite solution, and (ii) use this solution to predict the value of y when t = 10.
- (a) $\underline{dy} = 0.2y$ with initial value $y_0 = 200$ dt
- (b) $\frac{dy}{dt}$ = 1.2y with initial value y₀ =45 dt
- (c) $\frac{dy}{dt}$ = -0.4y with initial value y₀ =14
- (d) $\frac{dy}{dt}$ =0.354y with initial value y₀ =40

QUESTION ELEVEN

a) Find an expression for the MC function given the the following average cost functions:

ii) $AC = 3Q^2 - 4Q + 6 + \frac{100}{Q}$

In each case (i) state the value of fixed cost and variable cost ,and (ii) calculate the value of marginal cost when Q=50. [10]

b) The output for a firm over time is given by the function: $Q = \underline{t}^{3} - \underline{t}^{2} + \underline{3t} + 12$

30 5 10

- i) Determine the years in which the output is at maximum and minimum
- ii) Sketch the graph of Q

[10]

[20]

END OF PAPER