

(A United Methodist-Related Institution) INVESTING IN AFRICA'S FUTURE

FACULTY OF EDUCATION

FIRST SESSION 2011 MAIN EXAMINATION QUESTION PAPER

COURSE CODE	AAE 101				
COURSE TITLE	Introduction to Agricultural Engineering B Ed, BSc Ed (Block release)				
GROUP					
EXAMINER	Mr. W. Zendera				
DATE	December, 2011				
DURATION	3 Hours				
INSTRUCTIONS	 Answer any <u>five</u> questions The number of marks for each question is given in brackets Write legibly 				

Question 1

- a) List the areas of expertise of an agricultural engineer. (5)
- b) Describe the four ways of changing over to a new system during the implementation stage of the system development process. (8)
- c) Write down the recommended:
 - I. Slope
 - II. Depth of channel
 - III. Width of channel
 - IV. Channel spacing
 - V. Maximum contour channel length

 For a standard contour channel for highly erodible soils with a slope of 2%. (5)
- d) Calculate the power requirement (kW) for an irrigation pump that will deliver 87 m³/hr at a head of 50 m assuming that the pump efficiency is 75%. (2)

Question 2

- (a) With the aid of a diagram show how you would change the direction of rotation on:
 - I. A sprocket and chain assembly

(2)

II. A belt and pulley assembly

(2)

(b)

	Number of	
Gear	teeth	
1	24	
2	12	
3	16	
4	8	
5	12	

Figure 1

I.	State	(4)					
II.	Calcu	(4)					
III.	Calcu	(4)					
IV.	Predi	Predict the power available at shaft B.					
Ques	tion 3						
(a)	Brief	ly describe the events as	sociat	ted with the movement of the pis	ton in a four stroke		
	engin	engine.					
(b) of the		cylinder engine has a borner is 42 000 mm ³ , calcul		70mm and a stroke of 80mm. If	the clearance volume		
I.	The c	The compression ratio of the engine					
II.	The compression ratio of the engine The capacity of the engine in litres.						
(1 litr	$e = 10^6$	mm ³)					
Ques	tion 4						
(a)	Defin	ne the following					
	I.	brake power	(2)				
	II.	engine power	(2)				
	III.	PTO power	(2)				
	IV.	Drawbar power	(2)				
(b)	A 10	0 mm diameter hydrauli	c cylii	nder when the system pressure is	set at 26 000 Kpa,		
	the flo	ow rate is 0.015 m ³ /min	and th	ne control valve is activated for 1	5 sec. Determine the:		
	I.	Maximum force possil	ble	(4)			
	II.	Amount of extension		(4)			

(4)

III.

Rate of extension (m/min)

Question 5

(a) Determine the size of nozzles (L/min) required for applying a chemical at the rate of 185 L/ha when the nozzle spacing is 0.4545 m and the sprayer will be traveling at a velocity of 4.0 km/hr.

(10)

(b) How much water (kg) must be removed from 1.2 metric tons (t) of grain to lower the moisture from 14.5 to 11.0%DB? (10)

Question 6

1 (a) briefly describe the following

I. A steady state processII. An unsteady state processIII. A continuous process(2)

IV. A batch process (2)

(b) Skim milk is prepared by the removal of some of the fat from whole milk. This skim milk is found to contain 90.5% water, 3.5% protein, 5.1% carbohydrate, 0.1% fat and 0.8% ash. If the original milk contained 4.5% fat, calculate its composition assuming that fat only was removed to make the skim milk and that there are no losses in processing. (12)