NMEC 103 Statistics for Economists 1

May 2021

Formulae list and Statistical tables

1. ANOVA

MEASURES OF CENTRAL TENDENCY

- a. Mean
 - i. Ungrouped data

$$\mu = \frac{x_1 + x_2 + x_3 \dots x_n}{N}$$
$$\mu = \frac{\sum_{i=1}^N x_i}{N} = \frac{\sum x_i}{N}$$
$$\overline{x} = \frac{\sum x_i}{n}$$

Grouped data Mean $\overline{x} = \frac{\sum f_i m_i}{\sum f}$ or $\frac{\sum f_i x_i}{n}$ ii. f_i - class frequency m_i or x_i - class mark n - number of observations(total frequency) \sum - sum of frequency

- b. Mode
- Grouped data i.

$$M_o = O_{mo} + \frac{C(f_m - f_{m-1})}{2f_m - f_{m-1} - f_{m+1}}$$

 O_{mo} - lower limit of the modal class interval

- **C** class width of the modal class interval
- f_m Frequency of the modal class

 f_{m-1} - frequency of the interval preceding the modal class/interval

 f_{m+1} – frequency of the interval/class following the modal class/interval

- c. Median
 - i. Ungrouped data

Position of the median value $\frac{n+1}{2}$ th

- ii. Grouped data
- Grouped data
- n/2 to find median interval using cumulative frequency.

$$M_e = o_{me} + \frac{c\left(\frac{n}{2} - f(<)\right)}{f_{me}}$$

*o*_{*me*} – lower limit of the median class

C – class width

n – sample size

 $\boldsymbol{f_{me}}$ - frequency of the median interval

f(<) - Cumulative frequency of the class before the median class MEASURES OF POSITION

a. Quartiles

i. Ungrouped data

$$Q = \frac{Q(n+1)}{4}$$

Q- Quartile of interest

n- number of observations

ii. Grouped Data $n/_4$ th position

•
$$Q_1 = O_{q1} + \frac{c(\frac{n}{4} - f(<))}{fq1}$$

 O_{q1} - lower quartile

 $\mathbf{f}(<)$ - cumulative frequency of interval before the quartiles

 f_q - frequency of the quartile class

b. Percentile

i. Ungrouped data

$$\frac{p(n+1)}{100}$$

p-percentile of interest

n- number of observations

ii. Grouped data

$$\frac{pn}{100}$$
 th position

$$\mathbf{P} = \boldsymbol{o}_{pi} + \frac{c\left(\frac{n}{100} - f(<)\right)}{f_{pi}}$$

- **o**_{pi} lower limit of the percentile interval
- C interval width
- **n** sample space
- \mathbf{f} (<) cumulative frequency of the interval before p_i
- f_{pi} frequency of the interval class

MEASURES OF DISPERSION

- a. Variance
- i. Ungrouped data

• Variance
$$(s^2) = \frac{\left(\sum_{i=1}^n x^2 - \frac{(\sum x)^2}{n}\right)}{n-1}$$

iii. Grouped data

$$s^{2} = \frac{\left(\sum_{i=1}^{n} fx^{2} - \frac{(\sum fx)^{2}}{n}\right)}{n-1}$$

- b. Standard Deviation (s)
- i. Ungrouped data

$$S = \sqrt{\frac{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right)}{n-1}}$$

$$\sqrt{\frac{\left(\sum f x^2 - \frac{(\sum f x)^2}{n}\right)}{n-1}}$$

REGRESSION AND CORRELATION ANALYSIS

Regression equation

 $Y = b_0 + b_1 X + e$

- Y is the dependent variable,
- X is the independent variable,
- b₀ is the intercept and is constant,
- b₁is the slope,

$$b_1 = \frac{n \sum XY - \sum X \sum Y}{n \sum X^2 - (\sum X)^2}$$
$$b_0 = \frac{\sum Y - b_1 \sum X}{n}$$

Pearson's correlation coefficient (r)

$$r = \frac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^2 - (\sum X)^2][n\sum Y^2 - (\sum Y)^2]}}$$

Coefficient of determination

$$r^{2} = \left(\frac{n\sum XY - \sum X\sum Y}{\sqrt{[n\sum X^{2} - (\sum X)^{2}][n\sum Y^{2} - (\sum Y)^{2}]}}\right)^{2}$$

PROBABILITY

 $P(A) = \frac{r}{n}$ where A is an Event, r is number of outcomes of event A, n is total number of all possible outcomes (sample space) and P(A) is the probability of event A occurring.

i. Binomial distribution

$$P(x) = n Cx. P^{x} (1-P)^{n-x} = \frac{n!}{x!(n-x)!} P^{x} (1-P)^{n-x}$$

Where

n is the sample size,

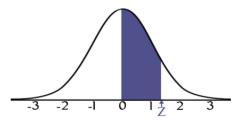
x is number of successes,

P is probability of success and

1-P is the probability of failure

ii. Poisson distribution

$$P(X) = \frac{e^{-a}a^{x}}{x!}$$
 where;


P(X) is the probablity of success over a given time or space,

a is the expected number of successes per time or space, a > 0e ~ 2.71828 (base of natural logarithms)

iii. Normal Distribution $\frac{X-\mu}{\delta} = Z$

HYPOTHESIS TESTING

- i. Mean $\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} = Z_c; Sample \ statistic$
- ii. Proportions Test statistic $Z = \frac{\rho - \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}}$

STANDARD NORMAL TABLE (Z)

Entries in the table give the area under the curve between the mean and *z* standard deviations above the mean. For example, for z = 1.25 the area under the curve between the mean (0) and *z* is 0.3944.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0190	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2969	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3513	0.3554	0.3577	0.3529	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998