

COLLEGE OF ENGINEERING AND APPLIED SCIENCES

NCIS301: DATABASE SYSTEMS

END OF FIRST SEMESTER EXAMINATIONS

NOVEMBER 2023

LECTURER: MR B. MUKHALELA

DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES

- 1. This paper carries **6** questions.
- 2. Answer ALL questions from Section A (Practical using a Lab allocated computer).Save your work in a Zipped folder on the Desktop, folder name should be your Student ID.
- 3. Answer any **4 (four)** from **section B** questions **use Exam provided Answer booklet in the section.**
- 4. Each question carries **20 marks**.
- 5. The marks for each question are indicated in square [] brackets.

SECTION A

Question One

a) Consider the relational database shown in figure 2 below and use MySQL Workbench Server to implement it and enter the data into the tables as is:

The database should be named as your fullname+boats like *mukhalelabraitonboatsdb* [5]

Sailo	rs		
sid	sname	rating	age
1	Fred	7	22
2	Jim	2	39
3	Nancy	8	27

Boats		
bid	bname	color
101	Nina	red
102	Pinta	blue
103	Santa Maria	red

sid	bid	day
1	102	9/12
2	102	9/13

Figure 2: A	Sample	Relational	Database
115010 2.11	Sumple	renuitonui	Dutuouse

- b) Using Reverse Engineering, design the corresponding Entity-Relationship diagram. NB: Take a screenshot from MySQL Workbench and save it as1b reverse and forward engineering. [5]
- c) Implement the following queries and show the results via a print screen or screenshot.:
 - a. SELECT s.sname FROM sailors S WHERE s.sname LIKE 'F_%F'. [2]
 - b. SELECT R.sid FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color='red'
 UNION
 SELECT R.sid FROM Boats B, Reserves R
 WHERE R.bid=B.bid AND B.color='green' [2]
- d) Write SQL code for creating table Reserves and show how you are to enforce referential integrity through referencing foreign keys to the other schemas. Take a screenshot of your executed code. [3]

e) Soon after attending to an ICT Security Policies workshop with your Senior DBA, he requested that you implement a SQL GRANT COMMAND for securing the database via a user name and a password. Now write the SQL GRANT statement for securing the database to the user 'Zvavharwa' 'Tapedza' who will be the using the Database as an Administrator.

SECTION B

Question Two

- a) Using a diagram, illustrate and explain stages of the DBLC. [14]
- b) Identify and briefly exemplify the three types of anomalies which a Database support professional might want to avoid by normalizing database tables. [6]

Question Three

a) Using examples, define the following database terms:

i.	Data.	[1]
ii.	Weak Entity.	[2]
iii.	Primary Key.	[2]
iv.	Referential Integrity.	[2]
v.	Cardinality.	[2]
vi.	Composite attribute	[2]
Desci	ribe the three schema architecture.	[9]

Question Four

b)

Consider the following database tables:

Articles				
ArticleNo	Author	Subject	Price	
56-01	Shaanewako	Database	100	
25-02	Ngeekwedu	Networks	100	
96-23	Charakupa	Programing	120	
78-98	Mambondiani	Database	90	
		Iournals		
<u>JournalNo</u>	Author	Subject	Price	
23334	Shoko	Database	20	
97862	Shaanewako	Calculus	40	
10023	Ndau	Networks	30	

Show the resultant table (if any) and describe the output of the following:

a) $\sigma_{subject = "database" and price <= "100"}(Articles).$

Article No	Author	Subject	Price
56-01	Shayanewako	Database	100

b)	$\prod_{\text{author}} (\text{Articles}) \cup \prod_{\text{author}} (\text{Journals}).$	[4]
c)	σ _{author = 'Shaanewako'} (Articles X Journals).	[4]
d)	$\rho_{\text{References}}(\sigma_{\text{subject}} = "database"}(\text{Articles})).$	[4]
e)	∏subject, author (Articles).	[4]

Question Five

a)	Briefly describe the concepts of logical and physical data independence as use	ed in
	databases systems. [4]	1
b)	Your Database Administrator told you that you shouldn't forget to implement a loc	cking
	protocol to safeguard execution of transactions. Define a lock and explain the two	types
	of locks available in DBMSs. [4]]
c)	Describe any three features of a nested transaction and link these to some of the A	ACID
	properties of concurrency control. [12	2]

Question Six

a)	Describe the following models of databases:	
----	---	--

i.	ER model.	[2]
ii.	Object oriented model.	[3]
iii.	Network model.	[3]
iv.	Hierarchical model.	[3]

b) Write SQL code snippets for accomplishing the following:

- i. Creating a new database to be called "*rabbitarydb*." [1]
- ii. Creating a table called "*buck*" and any two attributes and their data types. [3]
- iii. Suppose you had forgotten to include the primary key when you coded (bii) above, now write an appropriate SQL code for including a Primary Key. [2]
- iv. Write a statement for inserting any imaginary values into the table that you created in (bii) above. [3]

END OF EXAMINATION PAPER