

"Investing in Africa's future" COLLEGE OF ENGINEERING AND APPLIED SCIENCES (CEAS) NCSC103: CALCULUS

END OF FIRST SEMESTER EXAMINATIONS NOVEMBER 2023 LECTURER: DR. WESTON D GOVERE DURATION: 3 HOURS

INSTRUCTIONS

- 1. Answer ALL Questions from Section A and any THREE Questions from Section B.
- 2. All questions carry marks as indicated.

REQUIREMENTS

• List of Formulae and non-programmable electronic scientific calculator.

SECTION A (40 MARKS)

A1

- a) Prove that $\sqrt{2}$ is irrational.
- b) Find a rational number whose decimal expansion is 1.63636363...... [5, 5 marks]

A2 The sum of terms in a geometric series is

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}, \text{ if } r \neq 0, r \neq 1, n \in \mathbb{N}$$

Prove the above by the Principle of Mathematical Induction.

[8 marks]

A3 Solve the inequality

$$|5 - \frac{2}{x}| < 1$$

[6 marks]

A4 Find the domain of the following function given by $f(x) = \frac{\sqrt{(3x-5)(x+4)}}{x^3 - 16x}$ [6 m]

A5 Evaluate the following limits

(b)
$$\lim_{x \to \frac{\pi}{4}} \frac{\sin x}{\cos x}$$
$$\lim_{x \to 0} \frac{1 - \cos 2x}{\sin 3x}$$

[6 marks]

[4, 6 marks]

SECTION B (60 MARKS)

B6 (a) State the definition of convergence of a sequence {u_n}.
(b) Use the definition of a limit to show that

$$\lim_{n \to \infty} \frac{2n-1}{3n+2} = \frac{2}{3}$$

Page 2 of 4

(c) Evaluate the following limits

(i)

$$\lim_{n \to \infty} \frac{\cos n}{n}$$
(ii)

$$\lim_{n \to \infty} (\sqrt{n+1} - \sqrt{n})$$
(d) Show that
$$\lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$$

[2, 6, 4, 4, 4 marks]

B7

a) Sketch the graph of $\sin x$

b) If
$$f(x) = \frac{1}{x}$$
, show that $f(a) - f(b) = f\left(\frac{ab}{b-a}\right)$.

- c) Show that if $ad bc \neq 0$, then the function $f(x) = \frac{ax+b}{cx+d}$ is one-to-one and find its inverse, stating the domains of both the function and its inverse.
- d) State the definition of a limit of a function at a point $x = x_0$.
- e) Use the definition in (d) to prove that $\lim_{x\to 1} (x^3 6) = -5$

[3, 5, 6, 2, 4, marks]

B8

- a) Show that f(x) = 3x 5 is onto.
- b) If $f(x) = \sin(x + 3x^2)$ and $g(x) = \cos(x^2 x)$. Calculate $f \circ g$ and $g \circ f$.
- c) State the definition of continuity of a function f(x) at a point $x = x_0$.
- d) State the definition of differentiability of a function f(x) at a point $x = x_0$.
- e) Let

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & , x \neq 0\\ 0 & , x = 0 \end{cases}$$

Use the definitions in (c) and (d) to show that f(x) is continuous but not differentiable at $x = x_0$.

B9 (a) Evaluate
(i)
$$\int \frac{1}{x} \frac{1}{(\ln x)} dx$$

(ii) $\int \frac{11x+5}{3x^2+2x-5} dx$
(iii) $\int \frac{\tan^{-1} x}{1+x^2} dx$
(b) Let $C_n = \int \cos^n ax dx$. Show that $C_n = \frac{\cos^{n-1} ax \sin ax}{n} + \frac{n-1}{n} C_{n-2}$.
Hence, show that $\int_0^{\frac{\pi}{2}} \cos^n ax dx = \frac{(n-1)(n-3)(n-5)\cdots 2}{n(n-2)(n-4)\cdots 3}$ if *n* is odd.
[3, 5, 3, 9 marks]

END OF EXAMINATION