

COLLEGE OF ENGINEERING AND APPLIED SCIENCES(CEAS)

NCSC 305: PARALLEL AND DISTRIBUTED COMPUTING

END OF FIRST SEMESTER EXAMINATIONS

NOVEMBER 2023

LECTURER: Dr C. KURANGA

DURATION: 3 HOURS

Answer any **FOUR** questions.

Total possible mark is **100**.

Start **each** question on a new page on your answer sheet.

Question One

END OF EXAMINATION	
(iii) Virtualization.	[5]
(ii) Computational Granularity; and	[4]
(i) Amdahl's law;	[6]
a) Describe the following concepts:	
systems.	[10]
a) Discuss the five areas that present challenges in programming	for multicore
Question Six	
c) Explore three goals for heterogeneous multicore processors.	[6]
and scheduling of the tasks across a multicore system.	[9]
b) Discuss a four-step process that can be used to guide the design of the mapping	
a) Differential a Distributed System from a Parallel System.	[10]
Question Five	
b) Discuss different ways to classify parallel computers using Flynn's taxonomy. [12]	
a) Write a Fibonacci program using OpenMP tasks.	[13]
Question Four	
d) Hybrid.	[7]
c) Data Parallel; and	[6]
b) Distributed Memory;	[6]
a) Shared Memory (without threads);	[6]
Explain the following parallel programming models:	
Question Three	
performance goals without using the maximum operating frequency.	[5]
c) Describe how multiple processor cores on a single chip allow desi performance costs without using the maximum operating frequency.	-
b) Explore five Multicore Navigator notification methods.	[10]
a) Justify the need for parallel computing.	[10]
Question Two	[10]
b) Compare and contrast grid computing and cloud computing.	[16]
areas had hit a wall that impedes further growth.	[9]
a) Discuss the four areas used to improve system performance and how each of these	