

"Investing in Africa's future"

COLLEGE OF HEALTH, AGRICULTURE AND NATURAL SCIENCES

NACP 405: PLANT BREEDING AND BIOTECHNOLOGY

END OF FIRST SEMESTER EXAMINATIONS

DECEMBER 2023

LECTURER: MR. TABARIRA J.

DURATION: 3 HRS.

INSTRUCTIONS

- 1. Answer Four questions
- 2. Read and fully understand the question before answering
- 3. DO NOT repeat material
- 4. Credit will be awarded for logical and systematic presentations

Question One

- a. Briefly outline the justification that can convince African governments to spend large sums of money in research and development of cultivars suitable for the smallholder farmers. [10]
- b. Give an appropriate explanation for each of the following statements:

i)	Plant breeding is both an art and a science	[2]
ii)	Selection acts on existing variability,	[2]
iii)	Meiosis is the source of variability in breeding populations,	[2]

Meiosis is the source of variability in breeding populations, iii)

- iv) Broad sense heritability is always higher than narrow sense heritability, [2]
- v) Introductions are not always beneficial in crop production systems. [2]

Question Two

- a. State **four** different sources of germplasm and explain the strength of each in a breeding program **[8]**
- b. Discuss possible challenges being faced in your country in adopting emerging plant breeding technologies [12]

Question Three

- a. Discuss in detail possible reasons why GMO technology may not ensure food security in developing economies. [12]
- a. Given a population size of 400 diploid individuals with alleles [A₁ or A₂] at a gene locus and a mixed population of the following genotypes 200 A₁A₁ plants, 120 A₁ A₂ plants and 80 A₂ A₂ plants, calculate:

i.	Total number of A ₁ and A ₂ alleles	[3]
ii.	Gene frequency of A_1 and A_2 alleles in the population.	[2]
iii.	Genotypic frequency of A_1A_1 , A_1A_2 and A_2A_2 genotypes in the population.	[3]

Question Four

 Discuss in detail Johannsen's classical studies with <i>Princess beans</i>. State	the
major findings and their application in plant breeding	[10]
 b. With the aid of sketch diagrams, explain the following inbreeding methods i. Half-sib mating ii. Self-pollination iii. Full-sib mating 	[3] [2] [3]

iv. Back crossing [2]

Question Five

- a. With the aid of a flow diagram, explain how you would develop a new soya bean cultivar using a breeding procedure of your choice. [12]
- b. State and explain four features that promote self-pollination in self-pollinated crop species [8]

Question six

a. Plant breeding can be summarized using the following verbs:

i.	Variate;	[2]
ii.	Isolate;	[2]
iii.	Intermate;	[2]
iv.	Evaluate;	[2]
V.	Multiplicate; and	[2]
vi.	Disseminate	[2]
Briefly	explain each of the activities stated above	

b. Suppose you are appointed a breeder in a new breeding program, explain guiding principles when deciding on a breeding method to use in your program.**[8]**

END OF EXAMINATION