

"Investing in Africa's future"

COLLEGE OF HEALTH, AGRICULTURE & NATURAL SCIENCES

NACP 217: GENETICS AND BIOTECHNOLOGY

END OF SECOND SEMESTER FINAL EXAMINATIONS

APRIL 2023

LECTURER: MR. TABARIRA J.

DURATION: 3 HOURS

INSTRUCTIONS

Answer any **four** questions

All questions carry equal marks (25).

DO NOT repeat material.

Write legibly.

Question One

Give explanatory notes on the following:

	a. lı	nportance of mitosis in agriculture.	[8]		
	b. E	ifference between RNA and DNA.	[4]		
	c. E	ffects of temperature on gene expression.	[5]		
	d. S	ex limited characteristics.	[4]		
	e. E	pistasis gene interaction.	[4]		
Question Two					
a.	Prov	Provide possible gametes from organisms with the following genotypes:			
	а	. AaBb	[2]		
	b	. AabbCC	[3]		
	C	. AaBbCc	[3]		
	d	. AaBbCCDd	[5]		
b.	In ca	n cats, there is a coat color gene located on the X chromosome. This gene has tw			
	allel	alleles—orange and black. A heterozygous cat has tortoiseshell color (mixture of			
	oran	orange and black).			
	Pred	Predict the genotypic and phenotypic proportions among the offspring of the following			
	cros	ses. Pay careful attention to the genders of the offspring.			
i.	Blac	k female X Orange male	[3]		
ii.	Orar	ige female X Black male	[3]		
iii.	Tort	piseshell female X Black male	[3]		
iv.	Tort	oiseshell female X Orange male	[3]		
Qu	estio	n Three			

[5]

a. Justify why agriculture students study Genetics.

b.	Write brief notes on maternal effects.	[4]
C.	Differentiate between co-dominance and complete dominance	[5]
d.	Colour blindness is a recessive X-linked gene in humans. A husband and	l wife
	both are normal eyed although their respective fathers were colour blind.	
i.	Give the genotypes of this couple and justify.	[3]
ii.	What is the probability that, among the boys from this couple will be colo	ur
	blind?	[2]
iii.	What percentage of males among the children will have normal vision?	[2]
iv.	What percentage of girls among the children will be colour blind?	[2]
v. What is the expected percentage of children with normal visio		ecified)
	from this couple?	[2]
Ques	tion Four	
a. Di	scuss the perceived crop production and food security benefits of adopting	GMO
te	chnology in Zimbabwe.	[14]
b. In	flowers of the snapdragon plants, RR = red, Rr = pink, and rr = white.	
Wł	nat are the expected phenotypes and their frequencies from crosses betwe	en
pla	ants with?	
i.	red and white flowers	[2]
ii.	red and pink flowers	[2]
iii.	pink and pink flowers	[2]
iv.	pink and white flowers	[2]
c. Ex	oplain with justification the nature of dominance relations in flower color	ur in the
sn	andragon plant	[3]

Question Five

- a. Give genetic explanations, giving supporting evidence for the following observations:
 - i. A cross between a tall and dwarf maize plant always produces tall F₁ progeny.[3]
- ii. A cross between two pink flowered plants produced a mixture of red, pink and white flowered plants.
- iii. A cross between tall maize plants produced a mixture of tall and dwarf progenies. [3]
- iv. A cross between yellow mice gave a 2 yellow: 1 white [4]
- v. A normal man married a colour blind woman produced all colour blind boys and normal girls. [4]
- vi. Across between pure red bull and pure white cow produces roan coloured calves.
- b. Demonstrate your understanding of the importance meiosis. [5]

Question six

Provide a detailed explanation on the possible reasons why the adoption of GMO technology should be encouraged globally. [25]

End of Examination Paper