

"Investing in Africa's Future"

COLLEGE ENGINEERING AND APPLIED SCIENCES

NCSC 211- OPERATING SYSTEMS

END OF SECOND SEMESTER EXAMINATIONS

APRIL 2025

LECTURER: Mrs L FUNDISI
DURATION: 3 HOURS

INSTRUCTIONS

Answer any 4 (four) questions

All questions carry equal marks (25)

Show working!

Smart presentation of all answers will earn you extra marks

Begin your answer to each question on a fresh page

Question One

a) Briefly explain the following schedulers: Long term, short term and medium term

[12marks]

b) With the aid of a diagram outline and explain the 'process state'. [13 marks]

Question Two

a) Consider the following system snapshot using data structures in the Banker's algorithm, with resources A, B, C, and D, and processes P1 to P5:

	MAXIMUM				ALLOCATION				NEED				AVAILABILITY			
	A	В	C	D	A	В	C	D	A	В	C	D	A	В	C	D
P0	6	0	1	2	4	0	0	1					3	2	1	2
P1	2	7	5	0	1	1	0	0								
P2	2	3	5	6	1	2	5	4								
P3	1	6	5	3	0	6	3	3								
P4	1	6	5	6	0	2	1	2								

Using Banker's algorithm, answer the following questions.

a) How many resources of type A, B, C, and D are there?

[3 marks]

b) What are the contents of the Need matrix?

[4 marks]

c) With a clear indication of the safe sequence, is the system in a safe state? Why, (show working). [13 marks]

d) New request made

1 6 0 5

Using Banker's algorithm, determine if the projected allocation state is safe and whether the request will be granted or not. [5 marks]

Question Three

Using examples, explain the following in process synchronization problems and their solutions

- a. Dining philosophers problem
- b. Critical section problem
- c. Cigarette smoker's problem
- d. Bounded buffer problem
- e. The sleeping barber problem

[25 marks]

Question Four

Table below shows a set of processes and the associated burst time

Process	Burst time
P1	21
P2	46
P3	12
P4	37
P5	40
P6	56
P7	75

- a. Compute the average waiting time for this algorithm used. Show the total waiting time with a quantum of 20. [10 marks]
- b. Describe the condition for deadlock and four strategies of dealing with deadlock. [15 marks]

Question Five

Process ID	Arrival Time	Burst Time
P0	0	8
P1	1	1
P2	2	3
P3	3	2
P4	4	6

Pre-emptively and non pre-emptively compute the *competition time, average turn around time and average waiting time* for the above processes that are executing using Shortest job first algorithm (show working). [25 marks]

Question Six

- a. Differentiate the following:
 - i. Compile time vs load time
 - ii. Logical address vs physical address
 - iii. Internal fragmentations vs external fragmentation. [9 marks]
- b. Given 7 memory partitions of 100Kb, 500Kb, 200Kb, 300Kb, 600Kb, 400Kb, 250Kb(in order), how would the first-fit, best-fit, and worst-fit algorithms place

processes of 100 Kb, 318 Kb, 212 Kb, and 515 Kb, 50Kb, 495Kb (in order)? Which algorithm makes the most efficient use of memory and why? Explain the solution to the left memory? [16 marks]

END OF EXAMINATION