

"Investing in Africa's Future" COLLEGE OF ENGINEERING AND APPLIED SCIENCES (CEAS)

NMMS 105: MATHEMATICS FOR BUSINESS 2

END OF SECOND SEMESTER EXAMINATIONS

APRIL 2025

LECTURER: MR E. CHIKAKA

TIME: 3 HOURS

INSTRUCTIONS

You are required to answer questions as instructed in each section

Start each question on a new page in your answer booklet

Answer all questions in Section A and any three from Section B

Section A: Compulsory (40 Marks)

1. a) Differentiate the following functions with respect to x:

i)
$$f(x)=5x^3-3x^2+2x-7$$
 [3]

ii)
$$g(x)=e^{2x}\sin(x)$$
 [4]

2. a) Evaluate the following integrals:

i)
$$\int (4x^3 - 2x) dx$$
 [3]

ii)
$$\int e^x \cos(x) dx$$
 [4]

3. A company produces two products, A and B. Each unit of A requires 2 hours of labour and 3 units of material. Each unit of B requires 4 hours of labour and 2 units of material. The company has a maximum of 100 hours of labour and 90 units of material available.

Maximize and minimize
$$P=5x+7y$$
 [10]

4. a) Given the matrices $A = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ and $B = \begin{pmatrix} 5 & 1 \\ 2 & 3 \end{pmatrix}$, calculate:

i)
$$A+B$$
 ii) A^T [4]

iii)
$$(AB)^{-1}$$
 [4]

5. a) Solve the differential equation
$$\frac{dy}{dx} + 3y = 6$$
, given that y (0)=2 [4]

6. a) Solve the difference equation
$$y_{n+1} = 0.8y_n + 5$$
 with $y_0=10$ [4]

Section B: Answer ANY 3 Questions (Each Question carries 20 Marks)

Question 1

a) Find the second derivative of
$$f(x)=x^4-4x^3+6x-4x+1$$
 [5]

b) Determine the local maxima and minima of f(x)

[10]

c) A company's cost function is C(x)=50x+2000C(x)=50x+2000. The revenue function is R(x)=80x. Find the production level that maximizes profit. [5]

Question 2

- a) Evaluate $\int (x^2+3x+2) dx$
- b) Find the area under the curve $y=x^3-x$ from x=0 to x=2
- c) A company's marginal cost function is MC(x)=10+0.5x. Find the total cost function given that the fixed cost is \$500.

Question 3

A factory produces two products, P and Q. The profit per unit of P is \$4 and for Q is \$6. Each unit of P requires 2 hours of machine time and 1 unit of raw material. Each unit of Q requires 3 hours of machine time and 2 units of raw material. The factory has 60 hours of machine time and 40 units of raw material available.

- a) Formulate the linear programming model to maximize profit. [6]
- b) Solve graphically and determine the optimal production levels. [10]
- c) Calculate the maximum profit. [4]

Question 4

- a) Find the inverse of the matrix $A = \begin{cases} 2 & 1 & 1 \\ 6 & 5 & -3 \\ 4 & -1 & 3 \end{cases}$ [5]
 - b) Hence or otherwise solve the equation

$$2x+y+z = 12$$

 $6x+5y-3z = 6$
 $4x-y+3z = 5$ [10]

c) Solve using matrices the equations 2x-y=3, 5x+y=4. [5]

Question 5

- a) Solve the differential equation $\frac{dy}{dx} = 2x y$ [8]
- b) A business's revenue grows at a rate proportional to its current revenue. Write and solve the differential equation given that the revenue is \$1000 when t=0 and grows at 5% per year. [12]

Question 6

- a) Solve the difference equation $y_{n+1}-y_n=3$ [8]
- b) A company's profit changes according to the equation $P_{n+1}=0.9 P_n+100$, where $P_0=500$. Find P_1 , P_2 , and the general solution. [12]

END OF EXAMINATION