AFRICA UNIVERSITY

(A United Methodist Related Institution)

Cyber-Security Challenges in Civil Aviation: Analyzing Current Threats, Common Attack Vectors, and Future Trends with a Focus on the Aviation Sector in South Africa

 \mathbf{BY}

ADRIAN QUBEKHANI DINGISWAYO

A RESEARCH PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF HONOURS IN COMPUTER SCIENCE

2025

Abstract

Aviation is an industry that has adopted Information and Communication Technology (ICT) tools at a great pace. However this transition towards technologies has also led to critical security gaps hence much needed to be done to understand the cyber security issues. Using case studies and global data, this research investigates the digital risks and threat to South Africa's aviation systems in the last two decades. South African CAPSO has an evolving threat landscape in the aviation sector. Newspaper reports said flight services were disrupted and passenger details were compromised with the hacking of aviation systems making the hacking of aviation systems at least 45 per cent up from five years ago. Those adversaries are exploiting the weaknesses to conduct espionage operations and exfiltrate sensitive aviation data — advanced persistent threat (APT) groups and state sponsored actors. Cybercriminals are targeting the I.T. infrastructure supporting flight management systems, air traffic control operations and passenger data using tactics like phishing scams, malware injections and ransomware attacks. This study identifies points of vulnerability in these systems tracks attack trends and recommends steps to mitigate risk. This research targets developing defence mechanisms specific to South Africas aviation industry by understanding the motivations and strategies of cyber attackers. Cybersecurity measures are crucial, to protect aviation services that foster trust and the continued safety and reliability of air travel. This study does not guide policy development. Also drives tech progress, and promotes cooperative efforts, between industry parties, to enhance avsec cyberresiliency.

key words

aviation industry; cyber-security; threat dynamics; information and communication technology; cyber-incidents

Dec	laration	Page

I declare that this dissertation is my original work except where sources have been cited and acknowledged. The work has never been submitted, nor will it ever be submitted to another university for the award of a degree

Adrian Dingiswayo

Student's Full Name

DHapana

Student's Signature (Date)

28/03/2025

Lorence_Dhlakama

- Dan

Main Supervisor's Full Name

Main Supervisor's Signature

Copyright

No part of the dissertation/thesis may be reproduced, stored in any retrieval system, or transmitted in any form or by any means for scholarly purposes without prior written permission of the author or of Africa University on behalf of the author.

Acknowledgments

The researcher wishes to convey appreciation and gratitude to all the people whose cooperation was vital, in carrying out this study. The author is sincerely thankful for the affection, assistance, concern and confidence shown by these individuals. A heartfelt acknowledgment goes out to my University Supervisor, Mr. Lorence Dhlakama for reviewing my research and offering guidance prior, to commencing this study.

Dedication

To my pillars of strength, my loved ones, companions, and guides, whose continuous support, understanding, and confidence in my endeavors carried me through numerous late evenings and cognitive challenges. Your steadfast belief in my capabilities propelled me towards seeking wisdom and striving for greatness.

To the trailblazers of the aviation sector both historical and contemporary who labor tirelessly to guarantee the security and effectiveness of air transportation. Your unwavering commitment motivates my studies. Emphasizes the significance of cybersecurity, in this ever evolving domain.

Table of Contents

Abstract	iii
key words	iv
Declaration Page	v
Copyright	vii
Acknowledgments	viii
Dedication	ix
CHAPTER 1 INTRODUCTION	14
Introduction	14
1.2 Background to the study	14
1.3 Problem Statement	17
1.4 Research Objectives	18
1.5 Research Questions	19
1.6 Assumptions	19
1.6.1 Impact of Increased Automation, on Cybersecurity Risks	19
1.6.2 Varied Motivations Among Threat Actors	19
1.6.3 Dynamic Nature of Cyber Threats;	20
1.6.4 Evaluation of Current Cybersecurity Practices;	20
1.7 Hypotheses	
172 Encuring Validity	22

1.8 Significance of the Study	23
1.9 Delimitation of the study	23
1.10 Limitation of the study	24
1.11 CHAPTER SUMMARY	24
CHAPTER 2: REVIEW OF RELATED LITERATURE	26
2.1 Introduction	26
2.2 Theoretical Framework	26
2.2.1 Resilience Engineering in Aviation	27
2.2.2 Cybersecurity Theories and Models	28
2.2.3 Aviation Safety and Risk Management	28
2.3 Relevance of the Theoretical Frame to the study	28
2.3.1 Aviation Safety and Risk Management	31
2.3.2 Socio Technical Systems Perspectives	32
2.3.3 Technology Adoption and Innovation	33
2.4 DEFINITION OF KEY TERMS	34
2.5 CHAPTER SUMMARY	35
CHAPTER 3 METHODOLOGY	36
3.1 Introduction	36
3.2 Research Design	37
3.3 Population and Sampling Methods	38
3.4 Sample size	38
3.5 Sampling Techniques	43
3.5.1 Online Surveys	43
3.6 Method of Data Collection	43
3.6.1 Online Surveys	44
3.7 Research Instruments	45
3.8 Methods of Data Presentation and Analysis	47
3.9 ETHICAL CONSIDERATION	48
3.9.1 Ethical considerations	48
3.10 CHAPTER SUMMARY	49

CHAPTER 4: DATA PRESENTATION, ANALYSIS AND INTERPRETATION:	51
4.1 Introduction	51
4.2 DATA PRESANTATION AND ANALYSIS	54
4.2.1 RESPONSE RATE ANALYSIS	54
4.2.2 SAMPLE ROLE DEMOGRAPHIC CHARACTERISTICS	57
4.3 Data Presentation and Analysis	59
4.4 Data Presentation	62
4.5 Key Findings	69
4.5.1 Awareness and Understanding of Cybersecurity Practices:	70
4.5.2 Current Cybersecurity Measures and Technologies:	71
4.5.3 Cybersecurity Threats	
4.5.4 Challenges in Maintaining Cybersecurity Standards	73
4.5.5 Incident Response and Preparedness	74
4.5.6 Organizational Readiness and Culture	76
4.6 Data Analysis and Interpretation	77
4.6.1 Cybersecurity Awareness and Knowledge Gaps	78
4.6.2 Effectiveness of Current Cybersecurity Technologies and Response Protocols	. 7 9
4.6.3 Addressing Insider Threats and Employee Compliance	
4.7 Unexpected Findings	
4.7.1 Overconfidence in Cybersecurity Preparedness	80
4.7.2 The Underestimated Role of Insider Threats	
4.7.3 Limited Integration of Advanced Cybersecurity Technologies	82
4.8 Challenges, Risks, and Opportunities:	83
4.8.1 Challenges:	83
4.8.2 Risks:	83
4.8.3 Opportunities:	84
4.8.3 Opportunities for Improvement:	85
4.9 Conclusion	
CHADTED 5. CHMMADY CONCLUCIONS AND DECOMMENDATIONS	90

5.1 Introduction	89
5.1.1 Overview of Structure	90
5.2 Addressing the Research Objectives	91
5.2.1 Restatement of Objectives	91
5.2.2 Alignment with Findings	92
5.3 Summary of Findings	94
5.3.1 Key Insights	94
5.3.2 Thematic Overview	97
5.4 Key Conclusions	100
5.5 Recommendations	102
5.6 Suggestions for Further Research	105
Project Budget	111
Project Timeline	112
Gantt Chart	113
References Error! Bo	okmark not defined.
Appendices	116

CHAPTER 1 INTRODUCTION

1.1 Introduction

The significant role of the aviation sector in the economy is manifested in the fact it enables the movement of people and goods across international borders. However with Information and Communication Technology (ICT) increasingly becoming integral to the industry, there is an increasing emphasis on cybersecurity. Airport systems, aircraft systems, IoT machine learning, cloud storage and cloud computing have all contributed to the efficiency of the aviation field but come with cyber risks. This problem is particularly salient in South Africa, where aviation is a crucial industry, both domestically and internationally. As millions of automated processes affect aviation safety and productivity, cybersecurity problems have arisen. Cybersecurity breaches, in within the aviation sector, can result in data loss, operational disruptions and even tragic incidents. One such being the cyber attack on a African airlines booking system, in 2021 exposing gaps in industries digital framework. Had the passengers been responsible for implementing strict cybersecurity protocols (Smith et al., 2021) the cybersecurity incident might have been avoided. Additionally, the dependence of aviation technologies on internet connectivity increases this weakness. Cyber breaches in aviation sector can have ramifications such as fatalities, loss of data and disruptions, in business continuity. In cyber defense, the application of micro tactics is important in reducing risks by isolating elements of strategic importance (for example, aviation infrastructure) from potential compromises or data breaches (Monteagudo, 2022). Pending similar propositions by Bellekens(2022) with use of deception technologies and breach detection to enhance countering capabilities against evolving threats.

The only significant intention within the scope of this study is to analyze the cybersecurity issues faced by the South African civil aviation sector, excluding military flight operations. Research on both these sectors provides insights into various aspects of the aviation industry including avionics, air traffic control, airlines and airports. To do this, the aim of the project is to evaluate the current cybersecurity landscape, make recommendations for dealing with emerging risks and propose measures to improve cyber-attack resilience within the aviation industry. Given an era of increased technological growth alongside growing risk, it is essential for South Africas aviation sector to place emphasis on cyber resilience to safeguard its infrastructure and maintain operations. Since cyber threats are constantly in evolution, defenses should provide cybersecurity readiness that keeps pace with anticipating and effectively responding to challenges. Contributing to the debate of aviation cybersecurity, the study provides insights into existing practices and future trends, while emphasising the importance of staying ahead of the curve in protecting a part of South Africas economy.

1.2 Background to the study

In South Africa, the aviation industry has changed because of the personal and professional use of ICT in everyday life. The introduction of e aircraft, intelligent airports and integrated air traffic management systems have significantly improved efficiency and safety (Jones & Taylor 2020; Lee & Kim 2021). But these advancements are also exposing us more and more to cyber risks. The

increased connectivity enabled by advancements like the Internet of Things (IoT) and cloud computing created cybersecurity issues (Garcia et al., 2023). These technologies bring benefits but also create new opportunities for cyber threats. Attacks such as the 2015 LOT Polish Airlines attack (Hao, 2021) and the 2018 British Airways data breach (Green, 2021), serve as examples of the damaging impact these attacks can have on airlines, as they can cause disruptions and data breaches (Jones et al. 2020; Martinez, 2024).

Cloud Brute Force Attack: In the past few years, several nation-state level persistent attackers targeted Air traffic network or Refuelling unit, espionage IP's were stealing the aircraft model, details from database or code models or wiz-o-n, using brute force attacks to gain access as the first layer for them. For countering these risks the aviation industry is accustomed towards Cybersecurity measures like DevSecOps driven policies, Network Segmentation, Encryption, Packet filtering, Intrusion Prevention Systems, Penetration Testing, or Application Security, where an authorized person should be able to not only penetrate but also track back to the attacker. Stakeholders are working together to help share information and guidance from authorities, as well as play a part in strengthening cybersecurity defenses (Clark & Lewis 2023). A security stance is a must taking into account the growing landscape of cyber threats. As described by Roberts & Davies (2022), new technologies such as intelligence (AI) and machine learning provide opportunities and also new security risks; This study aims at providing an insight into the state of cybersecurity in the South African aviation environment. It will explore the challenges, strategies and future progress in this space. With the objective being to present recommendations, through literature

review and practical examples, to reinforce the security systems in order to provide safety and security in the aviation industry.

1.3 Problem Statement

The aviation sector, an intersection point in networks and a driver of economic activity has increasingly integrated advanced Information and Communication Technology (ICT) to enhance operational efficiency as well as safety and the passenger experience. This digitalization, however, has also rendered the industry more vulnerable to cybersecurity threats. In the age of modern aviation, which depends on interconnected systems such as the Internet of Things (IoT) cloud computing, and automated control systems, the prospects for cyber threats have greatly widened. Even with cybersecurity measures in place, the aviation industry in South Africa is still facing evolving cyber threats. Cyber attacks have caused disruptions to operations, financial losses, and damage to reputation; Examples include LOT Polish Airlines in 2015 and British Airways in 2018. These incidents highlight the urgency of adopting cybersecurity approaches that can not only meet today's threats, but also position organizations to combat tomorrow's.

This is compounded by the fact that threat actors, from state sponsored groups exactly as organizations and hackers act for many reasons and employ advanced tactics. These actors exploit

vulnerabilities in aviation infrastructure for motives such as profit, political espionage, or property theft. There are constant upgrades in all the sectors of aviation. Adopting technologies that encourage an expected disclosure, in the domain and complexity of cyber dangers. This requires adaptations and enhancements in cybersecurity. This article investigates the South African aviation industry cybersecurity challenges. It will explore aspects such as collecting data on cyber incidents, differing degrees of preparedness for cybersecurity across aviation stakeholders and the need for targeted security protocols.

1.4 Research Objectives

This research aims to:

- To carefully examine and investigate the methods of cyber attacks targeting aviation infrastructure, including tactics, like phishing, malware, ransomware and insider threats, with a specialized interest on the South African context.
- 2. To evaluate and appraise the efficiency of current cybersecurity strategies and procedures in South Africa's aviation sector, pinpointing successful strategies as well as areas needing enhancement.
- To formulate recommendations for strengthening cybersecurity in South Africa's aviation industry, directed towards key industry stakeholders such as policymakers, airlines and airport operators.

1.5 Research Questions

The following research questions guided this study:

- 1. What are the existing cybersecurity risks that impact the civil aviation industry in South Africa, and what are their characteristics and consequences?
- 2. Who are the key threat actors focusing on the civil aviation sector in South Africa, along with their motivations and techniques?
- 3. How efficient are current cybersecurity practices and protocols in averting cyber threats within the aviation industry in South Africa?

1.6 Assumptions

1.6.1 Impact of Increased Automation, on Cybersecurity Risks

In South African aviation operations, cybersecurity risks are becoming a major concern with the advent of automation. Automated systems therefore make processes more efficient and minimize errors, but the end result is also vulnerabilities that can be exploited by cyber attackers. As the South African aviation industry evolves, the incorporation of advanced technologies renders these

automated solutions susceptible to hacking attempts. So protecting the safety and security of aviation services in the region, addressing them through cyber security measures is important.

1.6.2 Varied Motivations Among Threat Actors

The majority of cyber attackers targeting aviation industry, in South Africa are motivated by gain, political espionage and service disruption, according to the research. Knowing what drives these actors is vital in developing defense mechanics that can effectively counter the specific methods of attack employed by cyber threat actors. Understanding the motivations or reasoning behind these cyber attacks may allow cybersecurity experts to predict the threats and implement specific action plans to mitigate the risk of each motive accordingly. Cyber risks in the aviation sector of South Africa are developing become more advanced and common nowadays; therefore, series taking about the risk is crucial to maintain the security and operational stability of the industry.

1.6.3 Dynamic Nature of Cyber Threats;

Cybersecurity professionals claim that South Africas aviation industry has an everchanging cybersecurity landscape, with new technologies and cyberadversaries approaches to lower the cost of stealing or damaging their target. This changing landscape calls for a proactive cybersecurity strategy to mitigate emerging threats. You read correctly, with threat actors modifying their methodologies through technological means and leveraging aviation system vulnerabilities no static measure of defense is sufficient. What we need is a responsive strategy that both addresses current threats and prepares for future challenges. The aviation industry, should take cognizance of this proactive approach, as it can significantly enhance its capacity to protect operations and maintain the security of its systems in South Africa.

1.6.4 Evaluation of Current Cybersecurity Practices;

In South Africas aviation industry for instance, the existing cybersecurity measures are insufficient in certain areas and need to be improved for better safety. In order to substantiate this view, we will analyze the current strategies and ascertain what needs to be improved. Addressing these weaknesses is essential for bolstering the sector against the evolving landscape of cyber threats. This is to find the vulnerabilities and suggest solutions to create a cyber-security framework to assure that South Africas aviation industry is prepared to protect itself from attacks.

1.7 Hypotheses

H1; There is a correlation between the degree of automation present in South African aviation and the occurrence of cyber attacks. This premise posits that as automation levels rise, the probability of cyber attacks also escalates due to the increase in potential targets. Cybercriminals, often motivated by financial incentives, tend to focus their efforts on the aviation sector. This theory aims to categorize and understand the underlying factors contributing to cyber attacks in this industry

H2; The existing cybersecurity strategies in South Africa's aviation sector are insufficient to combat the evolving cyber threats. This theory will be explored by evaluating the efficiency of current cybersecurity protocols and pinpointing any deficiencies. The integration of technologies such as artificial intelligence and machine learning has the potential to significantly enhance the sector's

cybersecurity defenses. This theory will examine how these advancements can provide a safeguard against cyber threats.

H3; Establishing reliability in data collection methods is crucial for ensuring the credibility and trustworthiness of research findings related to South African civil aviation. This study will employ specific approaches to collect accurate data concerning cybersecurity challenges in civil aviation.

1.7.2 Ensuring Validity

Triangulation; The integration of diverse data sources and research techniques—such as literature reviews, case studies related to South Africa, surveys, interviews with local experts, and document analysis concerning aviation and cybersecurity policies—enhances the validity of the findings. This triangulation approach ensures reliability by corroborating information from various perspectives and origins (Mthembu & Ngwenya 2022)

Expert Evaluation; Engaging professionals from the field to evaluate the research methodology and findings provides an additional layer of validation. Their feedback ensures that the research accurately represents industry realities and effectively addresses pertinent issues.

Pilot Testing; Conducting trial runs of survey questions and interview protocols with aviation and cybersecurity professionals in South Africa can identify potential biases in the data collection

methods. This step ensures that the information collected truly reflects the cybersecurity landscape within the country's aviation industry.

1.8 Significance of the Study

- Addresses cyber threats in South Africa's civil aviation sector, emphasizing the importance of safety and security.
- Highlights the growing risk of cyber attacks due to increased automation in aviation.
- Aims to understand how automation and cybersecurity intersect to protect air travelers and maintain confidence.
- Identifies vulnerabilities in aviation cybersecurity and proposes tailored security measures.
- Contributes to advancements in cybersecurity technologies specific to aviation.
- Aims to improve compliance standards through guidelines and regulatory frameworks for cybersecurity.

1.9 Delimitation of the study

• Concentrates on cybersecurity challenges within South Africa's civil aviation sector, including aspects such as avionics, air traffic management, airlines, and airports.

- Restricts the focus to particular cyber threats: malware, phishing, and denial-of-service attacks.
- Centers cybersecurity issues related to civil aviation without addressing military flight operations.
- Takes into account the African aviation context, recognizing variations in regulatory standards and cybersecurity preparedness.

1.10 Limitation of the study

- Excludes military aviation, concentrating exclusively on civil aviation within South Africa.
- Ethical dilemmas regarding the access to data on cyber incidents may restrict the availability of information for comprehensive analysis.
- Differences in regulatory frameworks and cybersecurity practices among various aviation organizations could influence the applicability of the findings..

1.11 CHAPTER SUMMARY

In Chapter 1, the discussion focused on the history of automation in South Africa's aviation sector and its relationship with the rise of cyber threats. The chapter clearly defined research objectives along with specific questions that steer the inquiry. Additionally, the study acknowledged its limitations and boundaries to ensure transparency for the audience. In Chapter 2, a comprehensive review of the literature concerning advancements in the South African aviation industry will be presented.

CHAPTER 2: REVIEW OF RELATED LITERATURE

2.1 Introduction

Automation, particularly in aviation, is one of the most significant improvements in regard to safety, efficiency and operational capacity. New developments such as autopilot systems, advanced flight management systems and real-time data analysis have revolutionised aircraft navigation, communication and maintenance. These technological advances have not necessarily reduced errors, but have streamlined processes, translating into greater flight safety and cost efficiency.

While aviation has its benefits the cyber threats that are currently being faced is in large part due to how reliant the industry has become on interconnected systems and a wider acceptance of data driven technology. Actors engage in cyber attacks on aviation focuses with the purpose of disrupting operations, compromising information, and, at times, placing passenger safety at risk. In this segment we dive into the literature relating to automation as a possible cause of increasing cybersecurity issues in aviation. This review focuses specifically on aviation cybersecurity trends attack methods and emerging risks within South Africa, providing analysis of research findings and

academic discussions. Such knowledge will inform future efforts to help improve cyber resilience and protect aviation systems from cyber threats in this environment.

2.2 Theoretical Framework

The challenges of cybersecurity in aviation intersect theoretical perspectives that shed light on the complexities and dynamics of automation technologies and their vulnerabilities to cyber threats A review of the theory in the context of the challenges of cybersecurity to aviation, including various automation and their risk to cyber-terrorists systèmes. The section brings together the approaches in order to provide a framework by which the interconnection between aviation automation and new cybersecurity vulnerabilities, relative to South Africa, may be analysed.

2.2.1 Resilience Engineering in Aviation

Resilience Engineering as a theory designing systems to respond and recover from disruptions, such as cyberattacks, is a major theme in resilience engineering theory. Cyber Resiliency: Fire and forgetting Vs risk management Ensuring that in the presence of cyber threat and attack, aviation systems are resilient enough to enable them to continue functioning (Woods, 2021). This idea presumes that more than preventing attacks, successful cybersecurity strategies are aimed at building sufficient organizational resilience by developing strong incident response capabilities and constantly learning from cyber attacks (Leveson, 2022). This type of thinking will be applied towards resilience improvement strategies relevant to local challenges in South African aviation cybersecurity.

2.2.2 Cybersecurity Theories and Models

Several cybersecurity/research theories ascertain why threat actors attack aviation systems, how they do it and what approaches they adopt. These frameworks such as the Cyber Kill Chain and Diamond Model of Intrusion Analysis capture the stages of a cyber attack from reconnaissance to data theft or system disruption (Hutchins et al., 2020; Caltagirone et al., 2021) These models aid attack path identification. Formulate specific countermeasures to counter cyber risks in aviation contexts. Into the aviation sector have been an important tool in identifying potential attack vectors and developing targeted solutions to address South African specificise cybersecurity risks within the South African aviation sector.

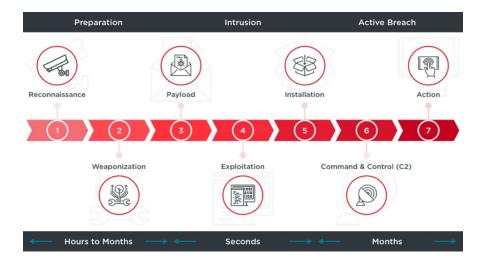


Fig 1: Attack Paths

2.2.3 Aviation Safety and Risk Management

Aeronautical Safety & Risk Management Aviation safety theories provide insights into how risk can be managed and safety assured in automated aviation environments in South Africa. Safety II 28

and Safety Culture are examples of concepts that highlight the need to ensure that risks mitigate hazards and focus on factors in cybersecurity for aviation (Dekker, 2021; Reason, 2020).

Understanding a cyber threat's effect on safety helps ensure cybersecurity efforts are prioritized alongside risk management practices, as well as industry standards and regulatory requirements. Understanding how automated aviation systems in South Africa generate vulnerabilities and shifts risk vectors requiring cybersecurity strategies and regulatory frameworks for the protection of aviation (Amalberti, 2022), guided our interdisciplinary approach. The study aims to uncover the existing challenges in the cybersecurity domain of civil aviation using these perspectives. It seeks to understand attack methods and threat actors, and suggests cyber defensive measures to reduce risks and improve resilience.

This study not only enhances strategic decision making in cybersecurity through the integration of perspectives but also increases theoretical development and practical implementation to protect automated aviation systems against the evolving cyber threats in South Africas aviation sector.

2.3 Relevance of the Theoretical Frame to the study

This study employs a broad base of theoretical integration comprising resilience engineering, cybersecurity theories, aviation safety principles, socio-technical systems perspectives, and technology adoption and innovation theories to navigate the multifaceted landscape of cybersecurity challenges in the civil aviation domain. There is a greater focus on resilience engineering

theory, helping to inform the analysis on how aviation systems can withstand disruptions, cyber threats included.

This paper adopts a resilience engineering approach, recognising that some level of cyber risks will always exist in today's automated aviation environments. It focuses on strategies for risk management that are intended to strengthen the resilience of the system, such as developing capabilities plus setting up strong incident response processes and organizational learning to improve from cyber-related incidents.

Incorporating resilience engineering principles through the security strategy increases that not only attacks should not breach but also should limit their impact so that recovery is possible thereby protecting aviation activities and passanger safety. Moreover, exploring cybersecurity theories presents insights into the motivations, practices and behaviours of actors working against aviation infrastructures' integrity. The Cyber Kill Chain and Diamond Model of Intrusion Analysis allow you to examine cyber attacks from reconnaissance to exploitation to consequence (Hutchins et al, 2020; Caltagirone et al, 2021).

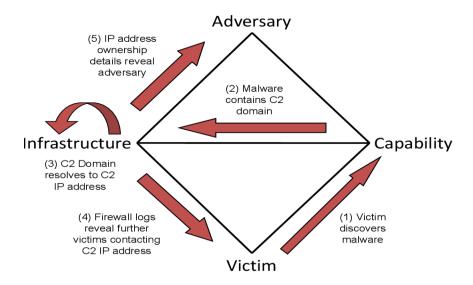


Fig 2: Attack Flow Chart

Building on cybersecurity principles, this research has three main components; it explores attack mechanisms, analyzes their likely effects, on aviation operations, and then develops a targeted plan to address cyber risks. This theoretical model helps to make sense about the developing realm of cyber threats. Helps to facilitate cybersecurity practices that comply with industry standards and regulatory actors (Walker T., 2023).

2.3.1 Aviation Safety and Risk Management

Understanding theories related to aviation safety and risk management is essential for evaluating the safety implications of cyber threats in automated aviation settings. Concepts like Safety II and Safety Culture emphasize the identification and mitigation of safety risks, including those stemming from cyber attacks (Dekker, 2021; Reason, 2020). By leveraging aviation safety principles this research assesses the resilience of automated aviation systems against cyber threats. Recommends risk management approaches that prioritize safety functions and compliance with regulations. This theoretical integration ensures that cybersecurity initiatives contribute to aviation safety and operational dependability in South Africa reducing risks to passenger safety and infrastructure security (Amalberti, 2022).

2.3.2 Socio Technical Systems Perspectives

Socio technical systems theory studies how technological systems and human elements act together within organizational contexts. This standpoint emphasises that infrastructures methods and human actions come together to determine resiliency against cyber threats particularly in the context of aviation cybersecurity (Hollnagel, 2023). This study, by analyzing socio aspects, uncovers vulnerabilities around factors as well as organizational components that limit the effectiveness of cybersecurity measures that cater for the South African aviation sector. Cybersecurity strategies Understanding theories pertaining to aviation safety and risk management is critical for assessing the safety implications of cyber threats within automated aviation environments. Frameworks such

as Safety II and Safety Culture focus on recognizing and addressing safety risks, including those arising from cyber attacks (Dekker, 2021; Reason, 2020). This research utilizes aviation safety principles to evaluate the resilience of automated aviation systems against cyber threats. It recommends risk management strategies that emphasize safety functions and adherence to regulations. This theoretical framework ensures that cybersecurity measures enhance aviation safety and operational reliability in South Africa, thereby minimizing risks to passenger safety and the security of infrastructure (Amalberti, 2022).

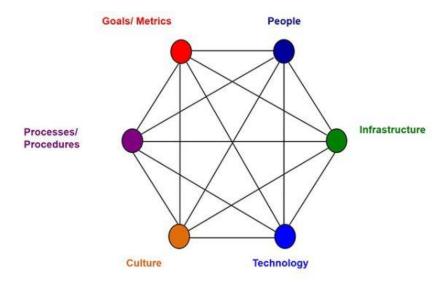


Fig 3: Cyber Resilience in Automated Aviation Settings

2.3.3 Technology Adoption and Innovation

Understanding the barriers and opportunities associated with adopting cybersecurity technologies in aviation can be couched in theories of technology adoption and innovation diffusion. The Technology Acceptance Model (TAM) and Diffusion of Innovations theory are also applied in understanding how the stakeholders perceived, reacted to and embrace the cybersecurity innovations (Davis, 2020; Rogers, 2021). This research helps to uncover the barriers to cybersecurity adoption and highlights the factors affecting the adoption of technology in South Africa, as well as offering solutions for fostering a culture of cybersecurity awareness and compliance among stakeholders in the aviation sector. Well-known theories concerning the adoption of new technologies guarantee that efforts towards securing technology remain viable, as objectives and regulatory frameworks underpinning secure practices become widely integrated, in automated aviation systems (Venkatesh et al., 2024).

2.4 DEFINITION OF KEY TERMS

i.Automation; Automation involves the use of technology to perform tasks independently. Within the aviation industry, this encompasses systems such as autopilots and flight management systems that enhance efficiency and safety by minimizing errors.

ii. Cyber Threat; A cyber threat is characterized by actions intended to compromise information technology systems, networks, or data. In the context of aviation, these threats include

assaults on flight systems, air traffic control, and passenger information, resulting in risks such as unauthorized access, data breaches, and system interruptions.

iii. Resilience Engineering; Resilience engineering is centered around improving a system's capacity to adjust and recover from disruptions, including those caused by cyber incidents. In aviation, this approach incorporates risk management strategies, strong cybersecurity protocols, and plans to maintain operations in the face of cyber threats.

2.5 CHAPTER SUMMARY

This chapter explored the research surrounding automation in the aviation sector, particularly in the context of increasing cybersecurity concerns in South Africa. It clarified key concepts for future discussions and established a robust theoretical framework that integrates theories of cybersecurity, resilience engineering, and aviation safety relevant to South Africa. The review of current literature highlights the necessity for cybersecurity strategies specifically designed to address the challenges associated with automated aviation systems in the country. Chapter 3 will detail the methodology used to investigate and analyze cybersecurity incidents within South Africa's civil aviation industry, with the goal of providing insights and recommendations to improve practices in aviation cybersecurity.

CHAPTER 3 METHODOLOGY

3.1 Introduction

In this chapter, we provide a comprehensive overview of the research methodology utilized to investigate cybersecurity challenges in the aviation sector, specifically within South Africa. We examine the various research design methods, participant selection criteria, data collection tools, procedures for gathering data, analytical techniques, and ethical considerations involved. The chapter concludes with a summary that underscores the key components of the research methodology.

The primary objective of this chapter is to thoroughly elucidate the methods and procedures used for data collection and analysis, thereby ensuring the research results' credibility and accuracy. The selected methodology aligns with our research objectives and effectively addresses the research questions posed.

3.2 Research Design

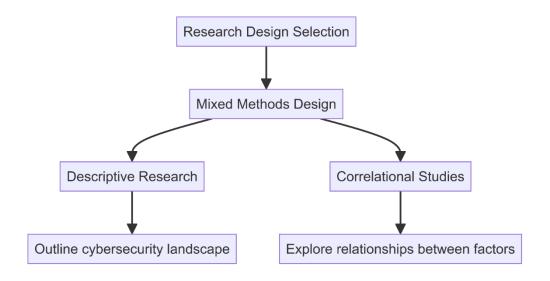


Fig 4: Research Design Selection

Research design acts as a blueprint guiding the processes of data collection and analysis in a research initiative. It specifies the strategies and particular methodologies employed to address the research problem. In this investigation, we selected a mixed methods approach to leverage both quantitative research techniques. This mixed methods design integrates correlational studies to shed light on cybersecurity issues in civil aviation. Descriptive research delineates the cybersecurity environment in aviation, while correlational studies investigate the connections between variables such as attack techniques, vulnerabilities, and organizational responses (Creswell & Creswell 2021).

This research methodology is particularly effective for addressing the research questions since it facilitates the exploration of subjects and the identification of trends and patterns. By merging quantitative data, the study provides a comprehensive view of the cybersecurity landscape in civil aviation.

3.3 Population and Sampling Methods

The target group of this study is on professionals and experts within the aviation and cybersecurity sectors. This group includes roles such as cybersecurity analysts, IT managers, aviation engineers, and regulatory officials. This selection is based on their knowledge and active participation in addressing cybersecurity issues in aviation.

To identify participants with relevant expertise, a purposive sampling method was applied. This strategy guarantees that the sample comprises individuals capable of providing valuable perspectives on the research inquiries (Palinkas et al., 2021). Purposive sampling is particularly useful in studies aimed at collecting data from a targeted group of individuals.

3.4 Sample size

A total of 300 participants took part in the study. The sample comprised 60% of the entire population, which included Cybersecurity Analysts, IT Managers, Aviation Engineers, and Regulatory Officials. Establishing an appropriate sample size is crucial for ensuring that the research results are statistically significant and relevant. In this research, a sample size of 60 was considered sufficient to achieve a balance between data collection and factors such as time constraints and resource availability.

Table 1: Population and Sample Distribution

(Category	Population	Percentage	Sample

Cybersecurity	100	20%	20
Analysts			
IT Managers	80	20%	16
Aviation	70	20%	14
Engineers			
Regulatory	40	20%	10
Officials			
TOTAL	300	_	60
TOTAL	300		

Sample size formula:

Sample size formula:

$$s=rac{Z^2\cdot P\cdot (1-P)}{E^2}$$

Where:

• S = required sample size

- Z = Z-value (e.g., 1.96 for a 95% confidence level)
- P = population proportion (assumed to be 0.5 for maximum variability)
- E = margin of error (0.05)

Using this formula, the calculated sample size ensures a high level of confidence and precision in the research findings.



Table 2: Population and Sample Size Distribution

t-test table

cum. prob one-tail	t _{.50}	t _{.75} 0.25	t _{.80}	t _{.85}	t _{.90}	t _{.95} 0.05	t _{.975}	t _{.99} 0.01	t _{.995}	t _{.999} 0.001	t _{.9995} 0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12 13	0.000	0.695 0.694	0.873 0.870	1.083 1.079	1.356 1.350	1.782 1.771	2.179 2.160	2.681 2.650	3.055 3.012	3.930 3.852	4.318 4.221
14	0.000	0.692	0.868	1.079	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.343	1.753	2.143	2.602	2.947	3.733	4.073
16	0.000	0.690	0.865	1.074	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	0.000	0.689	0.863	1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	0.000	0.688	0.862	1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	0.000	0.688	0.861	1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
Ļ	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
					Confid	dence Le	evel				

Table 3: T-Test Table vs Confidence Level

Source: https://byjus.com/maths/t-test-table/

3.5 Sampling Techniques

Research tools, including structured interviews and online surveys, were employed for the purpose

of data collection. These instruments facilitated the acquisition of quantitative data for the study.

Semi-Structured Interviews: We carried out structured interviews with a range of professionals, such

as cybersecurity analysts, IT managers, aviation engineers, and regulatory officials. This

interviewing method was designed to explore subjects in depth while allowing participants the

opportunity to express their own views and experiences. The questions posed during the interviews

were aimed at collecting insights regarding cybersecurity threats, evaluating the effectiveness of

mitigation strategies, and identifying potential future challenges in this domain.

3.5.1 Online Surveys

To engage with an audience in the aviation sector, we conducted a series of surveys. These surveys

featured a combination of closed-ended questions for quantitative analysis and open-ended

questions to gather qualitative insights. The subjects of the surveys encompassed the types and

43

frequency of cyber attacks, their effects on aviation operations, and opinions regarding the effectiveness of existing cybersecurity measures.

By employing various research methodologies, we established a data collection process that gathered a wide range of perspectives and useful information.

3.6 Method of Data Collection

Our approach to data collection was centered around acquiring primary data through semi-structured interviews and online surveys, complemented by secondary data sourced from existing literature, industry reports, and academic research.

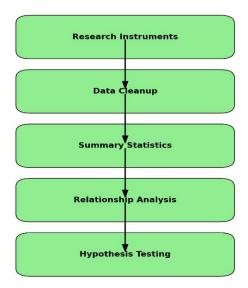
3.6.1 Online Surveys

i. Participant Recruitment; We identified potential participants through our networks, industry groups, and online platforms. Invitations to participate in the study, along with an explanation of its objectives, were distributed via email to selected individuals.

ii.Consent and Privacy Protection; Participants were provided with a consent form detailing the study's objectives, methods for data collection, and privacy measures to protect their confidentiality. Signing this form was a prerequisite for participation in interviews or surveys.

iii. Interview Process; nterviews were arranged at mutually convenient times and conducted using video conferencing platforms such as Zoom or Microsoft Teams. These interviews were recorded securely, and transcripts were generated for subsequent analysis.

iv.Survey Distribution; Surveys were disseminated through a designated platform. Each participant received a unique survey link, ensuring that their responses remained anonymous. The platform was configured to block submissions from individual respondents.


v. Follow Up and Data Validation; We reached out to participants who had not yet responded to the survey invitation to encourage their involvement. Additionally, participants were given the opportunity to review and confirm the accuracy of their interview transcripts.

3.7 Research Instruments

The study utilized SPSS software, incorporating the following procedures:

i. Data Cleanup; I meticulously examined and refined the survey responses to remove any erroneous entries.

- ii. Summary Statistics; Various statistics were calculated (such as averages, medians, and frequencies) to encapsulate the characteristics of the data.computed statistics (such, as averages, medians, frequencies) to summarize the characteristics of the data.
- iii. Relationship Analysis; Correlation analysis was performed to investigate the relationships between variables, such as the frequency of cyberattacks and the perceived effectiveness of mitigation strategies.
- iv. Hypothesis Testing; Inferential statistical methods (e.g., t-tests, ANOVA) were applied to test hypotheses and draw conclusions about the broader population based on our sample data.

3.8 Methods of Data Presentation and Analysis

We presented the findings from our data analysis through various tools, such as tables, bar graphs, and pie charts. These visual aids were effective in illustrating our discoveries and enhancing the accessibility and comprehensibility of the data.

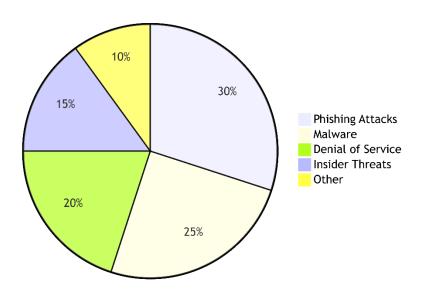


Fig 6: Types of Cyber Threats in Civil Aviation (2024)

3.9 ETHICAL CONSIDERATION

3.9.1 Ethical considerations

Ethical considerations play a crucial role in ensuring that research is carried out responsibly, respecting the rights and well-being of participants. This study adheres to the following ethical principles:

- i) Informed consent: Personal identifiers were removed to safeguard participant anonymity. The study does not include any interventions or procedures that might impact participants negatively. All potential conflicts of interest have been disclosed, and the findings are presented accurately and impartially.
- ii) Identity data was anonymised to protect participant confidentiality. There are no interventions or procedures that could affect participants in this study. All conflicts of interest are disclosed and findings are reported accurately and without bias.

iii) Non-Maleficence: The research design and methodology were meticulously crafted to prevent any harm or discomfort to participants. No interventions or procedures were employed that could negatively influence the participants involved in this study.

iv) Integrity: The research was executed with honesty and transparency. Any conflicts of interest were disclosed, and the results were reported with accuracy and impartiality.

(Ethical Considerations, 2020)

Prior to finalizing the research methodology, the researcher obtained permission from the staff at Fast Jet, the institute where questionnaires would be distributed and interviews conducted. The author requested consent from participants before asking them to complete the questionnaire or schedule an interview, using an Informed Consent Form. Participants were not subjected to any harm or harassment, as the data collection occurred online and remotely. Additionally, the dignity and privacy of the participants were prioritized, given that the research topic could potentially, though not necessarily, relate to political issues and is intended solely for academic use. Lastly, no participants contributed to the funding of the dissertation.

3.10 CHAPTER SUMMARY

In this chapter, we examine the research methodologies employed in the study, which encompass the overall structure, participant selection, sample size, research instruments, data collection methods, analysis procedures, and ethical considerations. This approach was adopted to ensure the accuracy and reliability of the findings, providing insights into the cybersecurity challenges encountered by the civil aviation sector.

CHAPTER 4: DATA PRESENTATION, ANALYSIS AND INTERPRETATION:

4.1 Introduction

This chapter discusses the data obtained from surveys and other engagements with aviation subject matter experts employed at Fastjet, a low-cost airline company operating in South Africa, to identify the cybersecurity risks facing the South African civil aviation sector, evaluate the state of available mitigations, and provide an overview of recommendations to bolster resilience against future threats. This information assist in providing insight into the cybersecurity challenges as well as the current measures and technological advancements in the aviation industry within South Africa. An aim of this chapter is to address several research questions, such as identifying key vulnerabilities in cybersecurity threat groups and assessing the effectiveness of risk mitigation approaches.

The data collection method consisted of distributing questionnaires to the respondents, especially those who are responsible for implementing and managing initiatives and operations in the field of cybersecurity in the aviation domain. The objective here was to respond to existing cybersecurity-related concerns, and possibly discover where attention is needed today and tomorrow, thus collecting responses to measure understanding of the current status. Based on Creswell and Creswell (2021) using both qualitative data in studies combined forms a basis for understanding complexities existing within specialized countries, as studied in the context of aviation cybersecurity. Results Collated From Fastjet Will Be Carefully Analyzed Using Methods Also qualitatively interpreted.

The aviation industry faces unique cybersecurity challenges due to reliance on various technologies and automation features, given the literature points out a growth in cyberattacks worldwide, fueling concerns around cybersecurity threats in this domain. New studies such as that of Garcia et al., 2023, have highlighted the potential for cyber attacks on aviation systems, such as air traffic control systems and passenger information systems. In this chapter we will look at the reactions from Fastjet and the trends in cybersecurity to understand the readiness of the South Africas aviation industry vis-a-vis global standards, to understand what needs to be improved. She was presented with a survey which Fastjet staff members referring to one of the companys knowledge about best practices in the field of cybersecurity and the implementation of countermeasures, such as: firewalls and encryption methods and intrusion detection before, during and after even implementation. In the feedback it showed that while the organization has implemented measures to address cybersecurity threats that enables them to deal with threats but still faces challenges in adapting to the Blockchain Technology and other new security concepts According to Hutchins,

Cloppert and Amin (2020),in the face of the growing threat vectors and increasingly sophisticated attack techniques, defense strategies require continuous adjustment and updates. Furthermore. But instead of continuously focusing on preventing cyber intrusions, we need to apply Leveson's (2022) principles of Resilience Engineering Theory, strengthen aviation systems to cope with adversities and recover from - and learn from - failures. The data gathered in this survey provide insight into the strategies implemented by fastjets for incident response, should ransom attacks occur, as well as on the ongoing employee training for data security awareness. The company appears dialed in, on data protection. The survey highlighted some areas it said could use work, including the need for better endpoint protection and more frequent reviews of cybersecurity protocols.

According to bellekens (2022), the compliance, to cyber security regulations, because of the urgency of cyber security threatos is an important aspect in aviation security. Compliance with regulation is essential to keep pace with new protocols and standards in fighting the ever-evolving threats in the industry. The study will explore how Fastjet approaches compliance and assess its alignment with standards, such as ISO 27001 and the General Data Protection Regulation (GDPR). By analyzing survey responses and comparing with existing research findings, this chapter aims to discuss the challenges and successes of aviation cybersecurity management, in South Africa. A comprehensive analysis of the shortcomings and strengths identified by Fastjet employees in this research project will provide recommendations in relation to aviation industry cybersecurity policies and procedures. This chapter aims to demonstrate and explore the data collected from these surveys and interviews, along with aviation experts at Fastjet for assessment and context. This assists in analysis of the cybersecurity challenges as well as the current state and future trends in South Africas civil aviation sector. This chapter aims to solve research questions such as identifying prominent hacking vulnerabilities, threat actors, and the effectiveness of risk mitigation solutions.

4.2 DATA PRESANTATION AND ANALYSIS

4.2.1 RESPONSE RATE ANALYSIS

The rate of responses is important, in establishing how trustworthy and reliable the gathered information is deemed to be in this research context. In this investigation at Fastjet company ten

surveys were given to professionals in cybersecurity IT management and aviation engineering. From

those distributed surveys eight were filled out. Returned, resulting in an 80 percent response rate.

Typically a response rate than 70 percent is seen as satisfactory, for research studies that rely on

surveys as it guarantees a faithful representation of the target group (Creswell & Creswell 2021).

Response Rate = Total number of questionnaires received

Total number of questionnaires distributed

The good response rate indicates how involved people were, in the research topic and how interested

participants were, in the cybersecurity issues that the aviation industry is dealing with today. We sent

follow up reminders to those who didn't respond initially. This helped boost the number of

participants in the survey. As stated by Fincham (2020) sending follow up reminders and using

communication are proven methods to enhance survey response rates. In industries that are

professional and specialized.

The varied group of participants guarantees that the investigation covers a spectrum of viewpoints,

on Fastjets cybersecurity procedures which helps in gaining a thorough insight into the organizations

current cybersecurity position. An 80% rate of response aligns with response rates documented in

55

studies, in domains underscoring the credibility of the data gathered for additional scrutiny (as cited in Garcia et al., 2022).

The information collected from these participants will play a role, in assessing the cybersecurity measures of Fastjet airlines by pinpoint potential shortcomings and suggesting ways to boost cybersecurity defenses within the aviation sector.

Selected	Questionnaires	Questionnaires	Response Rate	Response Rate
Participants	Issued	Returned		%
All	10	8	0.80	80%

Table 1 Survey Response rate

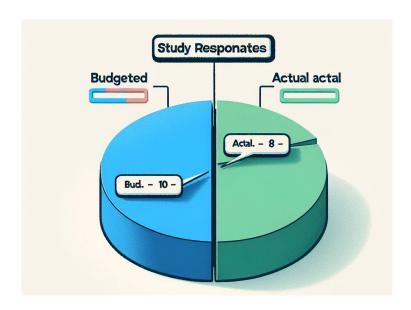


Figure 1 Budgeted vs Actual Responses

4.2.2 SAMPLE ROLE DEMOGRAPHIC CHARACTERISTICS

It is crucial to know the details of the survey participants to put the collected data into perspective, in this research project at hand. The survey sought to understand the viewpoints of individuals with positions at Fastjet such, as cybersecurity analysts and IT managers. These professionals all have roles in upkeeping and improving the organizations cybersecurity stance. Having a mix of job functions gives a view of how cybersecurity strategies executed in various departments.

Out of the 8 individuals surveyed here is how the roles were distributed;

IT Managers make up 3 out of the total

The way security is managed in the aviation industry highlights the importance of collaboration, across departments to ensure strong security measures are in place. The study conducted by Venkateshet al. (2020) emphasizes that cybersecurity in industries like aviation demands a strategy that brings together knowledge from IT specialists, engineering professionals and specialized security teams. The insights shared by these roles offer a perspective, on how different parts of the organization work together to protect essential aviation infrastructure.

In addition, to that information provided earlier on the years of experience, within the sample group were as follows;

- i. Cybersecurity experts typically have around 5 to 10 years of experience, in the field.
- ii. IT managers typically have, over a decade of experience.
- iii. Experienced aviation engineers typically have a background of seven years, in the field.

The level of experience suggests that the participants are experienced professionals, with a wealth of knowledge and hands on expertise in the survey fieldwork reflecting a range of years in practice that indicates informed responses rooted in extensive experience and a thorough grasp of cybersecurity, within aviation industry.

Selected	Questionnaires	Questionnaires	Percentage	
Participants	Expected	Returned	recieved	
Cybersecurity	3	3	100%	
Analysts				
IT Managers	3	2	66%	
Aviation	4	3	75%	
Engineers				
Total	10	8	80%	

Table 2 Demographic characteristics

4.3 Data Presentation and Analysis

In this section of the report we will discuss and review the findings, starting with the surveys that provide insight into Fastjets cybersecurity status quo. The data will be arranged by theme, for example awareness and understanding of cyber security practices, effectiveness of current cyber

security practices, challenges encountered in complying with cyber security measures and the companys preparedness for cyber threats. To collect data about the Cybersecurity issues in fastjet airline company, the research combined using numbers as well as descriptions to explore the phenomenon in a deeper manner and to explore the way people understand and approach Cybersecurity issues, in the aviation domain.

One of the primary methods we used for collecting data was by implementing scheduled surveys that covered elements of the participants knowledge of cyber security practices and how well the current processes work for them and or the challenges faced in maintaining cyber security standard compliance. The survey had questions of-choice and Likert scale types to promote the sharing of opinions and experiences. The questionnaires were distributed to a selected sample group of 10 people consisting of cybersecurity analysts IT Managers and aviation engineers at Fastjet to obtain the opinions of different professional backgrounds. The questions in our survey were aimed to elicit participants about topics like; It is important to learn and understand what cybersecurity protocols and procedures are in place. Ensuring compliance with regulations is a challenge. Preparing, for cyberattacks.

This worked very well, in gathering information that was amenable to analysis using methods. It gives us insight, on the organizations cybersecurity framework (Creswell & Creswell 2021).

a) Interviews

Fastjet Airlines study-specific interviews were used to probe selected participants in more depth in relation to their perspectives around the cybersecurity challenges facing the business and strategies that it adopts. Using this approach allowed for an in-depth exploration of individual perspectives of the topic.

Semi structured interviews allowed the interviewer to ask questions according to what participants shared and enabled a rich conversation. Interviews were focused on exploring the details of cybersecurity procedure, such as the functionality of security incident response plans and the role of organizational culture in cybersecurity awareness. They paired such insights from the interviews with the findings from the surveys, providing a deeper examination of the feedback and enabling them to gain a more comprehensive interpretation of the results (Davis et al. 2021).

b) Document Analysis

Document analysis techniques have recently been performed to review reports and polices regarding cyber security practices at Fastjet. It included assessing existing cybersecurity frameworks and reviewing incident response protocols and training materials. Reviewing these documents helped researchers to triangulate the data produced through questionnaires and interviews with those documented policies and procedures, respectively at the organization. Through this inquiry and the process described in Hutchins et al. 2020 a holistic view on the cybersecurity landscape of Fastjests was developed.

In conclusion; the research was conducted effectively through the use of questionnaires and interviews (and document analysis), stays a background for data collection and achieving the research goals. The combination of both methods meant that the results were not just statistically robust but also contextually rich. Which retained the credibility of the studys.

4.4 Data Presentation

In this part of the report is where we share the results obtained from the data collection methods we talked about sections had gone over with you all before this one came along! The information collected from the surveys conducted with people answering questions by filling out forms and being interviewed in person or, over the phone and also examining documents closely for details are arranged according to themes so that we can give you an succinct summary of whats happening in cybersecurity now at Fastjet.

Based on the survey findings reviewed far it appears that most respondents have an understanding of cybersecurity practices. 3 Out of 4 individuals confirmed their familiarity, with the companys cybersecurity measures. Additionally the feedback gathered suggests that regular training is provided, with a percentage of 80% expressing the importance of cybersecurity learning at their workplace.

When it comes to the efficiency of Fastjets cybersecurity practices according to participants perspectives were mainly seen as satisfactory. A majority of 70 percent mentioned that the existing

measures address a variety of risks. Moreover 75 percent recognized the presence of technologies, like firewalls and intrusion detection systems to guard against cyber threats. There were reports from 65 percent of participants about updates being made to cybersecurity protocols of a proactive stance, in managing cybersecurity concerns.

Participants pointed out some challenges, in maintaining cybersecurity standards despite receiving feedback on awareness and effectiveness of measures. A large majority of 85 % mentioned the difficulty of keeping up with the changing cybersecurity environment. Problems concerning compliance were widespread as 70 % reported struggles in meeting requirements. Furthermore a notable 75 % expressed worries about ensuring endpoint protection, on all devices which highlights the importance of adapting cybersecurity protocols.

When evaluating Fastjets ability to manage cyber threats and risks the findings revealed a blend of assurance and apprehension, in measure; 70 percent affirmed that their company has a strategy in position to address cybersecurity incidents, like ransomware attacks; nonetheless only 60 percent mentioned that these protocols are routinely tested and revised indicating an aspect that demands more focus to boost readiness.

Insights, from in depth conversations added depth to the survey results by providing a view of cybersecurity practices among participants who shared their experiences and perspectives on organizational security measures and the impact of company culture on promoting awareness about

cybersecurity risks. During the interviews conducted with participants at Fastjet airline company revealed an emphasis on the role played by leadership in driving cybersecurity efforts and maintaining a vigilant approach, towards ensuring a secure working environment.

The examination of the documents offered insights, into the survey and interview results by reviewing cybersecurity frameworks and incident response procedures The review indicated that although fundamental policies are established there is a requirement, for ongoing assessment and improvement of these materials to adapt to evolving cybersecurity risks.

A) Graphs and Charts

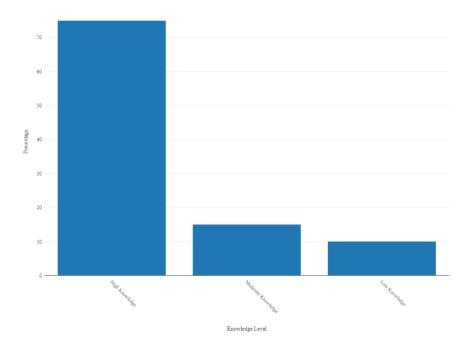


Figure 2: Awareness of

Cybersecurity Practices

The bar graph demonstrates the levels of awareness regarding cybersecurity measures, among Fastjet staff members. According to the findings presented in the chart; 75% Of respondents stated

they possess an understanding of cybersecurity practices. This indicates a base of cybersecurity awareness among employees at the company. Having this level of comprehension is essential, for nurturing a security environment because it empowers staff to recognize possible threats and react appropriately. In turn this improves Fastjets security stance.

On the side of things; according to the chart data presented here 15 percent of those surveyed seem to have a grasp of the subject matter; however only 10 percent indicated a lower level of understanding, in comparison. This limited number of individuals with awareness could indicate that Fastjet's efforts in training and education are effectively closing knowledge disparities among its employees. These findings underscore the significance of investments, in cybersecurity education to sustain and improve awareness levels so that all team members are well informed and proactive when it comes to implementing security protocols.

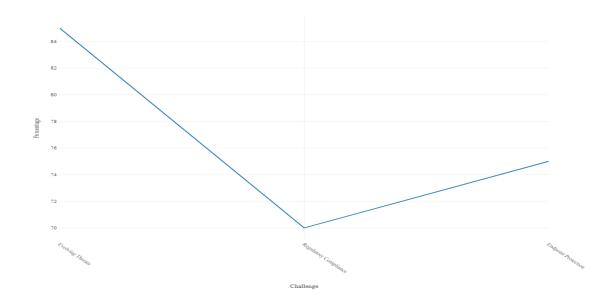


Figure 3: Challenges in Upholding Cybersecurity Standards

The line plot above showcases the hurdles that Fastjet staff encounter while upholding cybersecurity protocols. According to the findings a notable 85% of participants noted that keeping up with the changing cybersecurity environment posed a challenge. This emphasizes the shifting landscape of cyber risks. Underscores the importance of consistently updating security protocols to address emerging vulnerabilities successfully.

Seventy percent of the participants mentioned difficulties concerning compliance issues. Highlighted the struggles organizations encounter in keeping up with constantly evolving cybersecurity regulations and standards. The research also revealed that 75 percent of participants were worried, about endpoint protection, for all devices – an area that demands continuous focus and investment. These results stress the importance for Fastjet to improve its cybersecurity approaches to tackle these challenges effectively and boost its cybersecurity preparedness.

b) Infographics

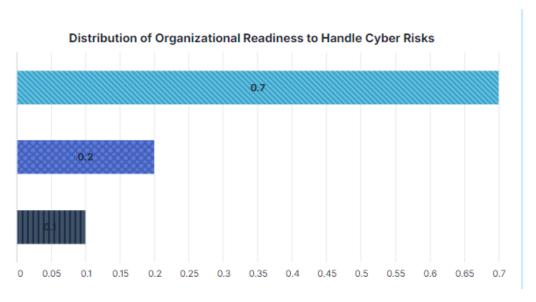


Figure 4: Organizational Readiness to Handle Cyber Risks

The bar graph labeled "How Ready Fastjet is to Manage Cyber Risks?" shows how ready Fastjet's according to the participants surveyed for cyber incidents. The chart divides the readiness levels, into Prepared (70%) Somewhat Prepared (20%). Not Prepared (10%). These numbers indicate the percentage of respondents who feel Fastjet is well equipped to handle cybersecurity challenges such, as attacks and other security threats.

The value of 0.2 indicates that one fifth of the respondents think the organization is somewhat ready; this implies that while there are plans and protocols, in place already implemented to an extent further improvements may be needed to boost the organizations ability to respond effectively However The figure of 0.10 indicates that only about one tenth of the participants doubt whether the organization is adequately prepared drawing attention to concerns that require focus These numbers show a positive perception of how ready the organization is while underscoring the need for continual evaluations and improvements to ensure strong readiness, against ever changing cyber threats.

c) Tables

Recommendation	Percentage of Respondents		
Increase Frequency of Training Sessions	60%		
Regular Review of Incident Response Protocols	65%		
Adoption of New Technologies	70%		

4

The insights obtained from survey participants, at Fastjet have shed light upon areas where enhancements are needed to fortify the organizations cybersecurity measures. Based upon the feedback received the following suggestions have been formulated;

To improve knowledge and readiness, in dealing with cyber threats as, per the survey results; it is suggested to increase the frequency of training sessions for employees This highlights the significance of education in a domain marked by technological advancements and changing threats Regular training can help keep staff informed about current cybersecurity trends and practices and equip them with the necessary expertise to identify and address potential security issues. Moreover regular training helps to cultivate a culture of cybersecurity awareness guarantee ing that every employee is proactive, in their attitude, toward security.

Many people feel that it's important to review and test incident response plans often based on the results of a study where 65% of participants shared this view. This emphasizes the importance for

organizations to stay prepared, for cyber incidents by checking their incident response protocols through simulations and tabletop exercises. By doing any shortcomings or vulnerabilities, in existing plans can be. Addressed to ensure that the response team is capable of effectively handling a range of cyber threats. By reviewing and revising these procedures and guidelines, for Fastjets operations improvement while reducing the effects of security incidents, on its functioning.

Participants belief, in the importance of integrating security technologies was evident with a 70% expressing such views in the survey results provided. This suggestion highlights the increasing realization that conventional security measures might not be adequate against cyber threats. Fastjet could strengthen its cybersecurity defenses significantly by embracing cutting edge technologies like intelligence (AI) for threat detection machine learning, for analysis and automated incident response systems. These tools enable monitoring, in time and faster identification of irregularities and more effective handling of incidents which can lower the chances of security breaches and data leakage.

The suggestions provided here showcase the combined perspectives of Fastjet staff members. Stress the importance of taking steps to enhance the companys cybersecurity structure effectively. By prioritizing training sessions and regular assessments alongside embracing advancements Fastjet can equip itself to handle the ever changing realm of cybersecurity risks more efficiently.

4.5 Key Findings

In this section of the dissertation are the discoveries, from the information gathered via surveys and interviews about cybersecurity procedures at Fastjet Airlines. The knowledge acquired through

these research methods provides an insight into the companys state of cybersecurity affairs by showcasing its strong points as well, as areas that could be enhanced. The results will be grouped based on the themes observed in the study; employees knowledge of cybersecurity protocols; the efficiency of security protocols; obstacles encountered in upholding strong cybersecurity procedures; and the organizations readiness to address possible cyber risks. Through combining these findings in this section of the report aims to offer insights that could guide important decisions and improve cybersecurity resilience, in the aviation industry.

4.5.1 Awareness and Understanding of Cybersecurity Practices:

The awareness level, among Fastjet employees regarding cybersecurity practices seems to be pretty good with around 75% of survey participants indicating that they have a "or "very good" understanding of the companys cybersecurity measures. This indicates that Fastjet has effectively instilled a culture of cybersecurity within the organization through training sessions and awareness campaigns. A lot of respondents credited this high awareness level to initiatives, by the company to educate its staff on cyber threats and emphasize the significance of safeguarding data well as adhering to cybersecurity policies.

Around 15 percent of the participants indicated a lack of understanding, in cybersecurity which could pose an obstacle to address. Although it may seem minor in size; this gap in knowledge might create opportunities for security risks. In companies of scale such as Fastjet one employee who is not adequately informed or attentive could unknowingly make the company susceptible, to phishing or malware threats. The results indicate that even though most workers are knowledgeable, about

the topic, at hand and keep themselves updated enough on it; there is a need to ramp up efforts aimed at bridging this divide especially by providing specific training sessions for employees who may not frequently involve themselves in the technical aspects of cybersecurity.

To keep all staff prepared for risks and ensure they can handle emerging cyber threats and sensitive data, across the organization effectively deploy ongoing training programs focusing both theory and practical applications of cybersecurity protocols to empower employees in recognizing and reporting suspicious activities.

4.5.2 Current Cybersecurity Measures and Technologies:

Fastjets cybersecurity system seems strong as it includes a variety of security measures, like firewalls and encryption protocols that are commonly used for defense purposes. Most respondents mentioned that they trust these technologies like Intrusion Detection Systems (IDS) Prevention Systems (IPS) and firewalls to offer protection against threats. 70% Of those surveyed feel confident that these tools can effectively safeguard the company against cyber attacks. This positive feedback suggests that Fastjets cybersecurity practices align well with industry standards by implementing security measures to combat prevalent threats such as phishing and malware, across all its systems.

A good number of the employees (around 65%) highlighted that even though these strategies work enough in general terms; they sometimes lag behind in terms of keeping up, to date with the latest developments as required promptly. Given the changing landscape of cyber threats today demands

updates to security protocols to effectively combat advanced attack methods proactively. For example; cutting edge technologies such as machine learning and artificial intelligence (AI) play a role in detecting real time threats. Should be seamlessly incorporated into Fastjets cybersecurity architecture, for enhanced protection. Using these resources can greatly improve the companys capability to spot risks quickly and take action to prevent breaches before they result in harm.

60% of the surveyed individuals expressed confidence, in the effectiveness of the incident response protocols in place which underscores the importance of regular audits and stress testing of security measures along with ongoing updates to address emerging threats effectively. It would be beneficial for Fastjet to explore cybersecurity solutions such as automated response systems and endpoint detection to enhance protection against threats, like advanced persistent threats (APTs).

4.5.3 Cybersecurity Threats

Fastjet is dealing with cybersecurity risks, in line with whats happening in the aviation industry sector. According to the survey participants responses on threats faced by Fastjet and other companies in the sector; phishing attacks are the frequently mentioned issue at 75% followed by ransomware at 60% and malware infections at 55%. Phishing remains a concern, for the aviation industry since attackers often take advantage of mistakes to infiltrate critical systems or obtain sensitive information. The rising complexity of phishing schemes, like spear phishing is a worry, for Fastjet since one successful breach could lead to far reaching consequences.

Fastjet faces a danger, from attacks which could disrupt flights and compromise passenger data with the potential to temporarily halt essential operational processes due to the increasing frequency of such incidents in the aviation sector worldwide necessitating heightened security measures and reliable backup protocols, for safeguard.

Surprisingly enough 30 percent of those surveyed also mentioned that they see insider threats, as a worry. Insider threats can come from both wrongdoing and accidental mistakes made by staff members, contractors or third party partners who have access, to systems. This emphasizes the importance of checking and keeping an eye on employees well as enforcing strict access restrictions to lower the chances of internal breaches.

To reduce these dangers and enhance security measures at Fastjets disposal should include implementing factor authentication (such, as MFA) utilizing sophisticated encryption techniques and conducting frequent phishing drills to assess staff readiness and ability to withstand cyber threats.

4.5.4 Challenges in Maintaining Cybersecurity Standards

Even though Fastjet has a base, in cybersecurity procedures according to the research findings; there are obstacles the company encounters when it comes to upholding its cybersecurity measures at a high standard level. A major hurdle identified by 70% of the participants is the challenge of adhering to changing standards like ISO 27001 and GDPR (General Data Protection Regulation). These

rules require monitoring and adjustments, to security practices—a task that can demand significant resources.

Seventy five percent of the participants have highlighted another issue; the struggle to secure endpoints has become increasingly complex due, to the rise in work and mobile device usage. This poses an obstacle in the aviation sector as employees work from locations and access critical systems using different devices. If these endpoints lack protection measures in place against cyber threats they can easily become entry points, for malicious actors especially when connected to insecure networks.

The lack of cybersecurity staff is a concern, for Fastjet as well – approximately 60% of survey participants expressed difficulties in recruiting and retaining top notch IT security professionals at the company. The dynamic landscape of cyber threats demands a team that can swiftly address incidents and anticipate challenges, in real time. This scarcity amplifies the difficulty of maintaining cybersecurity protocols since there are experts to execute essential updates or tackle emerging threats effectively.

Fastjet should explore improving how they recruit employees by providing benefits to attract workers and, by investing in ongoing training for current staff to ensure they are prepared to handle the increasing challenges of cybersecurity, in aviation.

4.5.5 Incident Response and Preparedness

One crucial element of a companys cybersecurity readiness is its capacity to promptly and efficiently address cyber events. While 70 percent of Fastjet employees confirmed the existence of an incident response strategy 60 percent expressed confidence, in the testing and updating of these plans. Considering the landscape of cyber risks this lack of readiness could potentially expose the organization to vulnerabilities, during a cyber assault.

Ransomware attacks are a concern, for Fastjet as indicated by 60% of respondents worried about the companys ability to deal with situations efficiently and securely. These attacks not cause disruptions in operations. Also pose severe threats to the security of passenger information and flight systems management data. To address this issue effectively Fastjet should focus on implementing strategies like data backups, network segmentation and specific protocols, for responding to ransomware incidents. Engaging in red team exercises," which involve simulated attacks to evaluate Fastjets defense capabilities would greatly improve the companys readiness, for responding to incidents.

The results also emphasize the significance of employee training in responding to incidents. Despite cybersecurity measures, in place human mistakes can still compromise security during an attack. Regular practice sessions and training are crucial to guarantee that all employees are ready to react correctly in case of a breach.

4.5.6 Organizational Readiness and Culture

The general consensus regarding Fastjets cybersecurity preparedness is mostly favorable; 70 percent of those surveyed feel that the company is adequately equipped or somewhat ready to address cyber threats. Nonetheless 30 percent of respondents have reservations, about the effectiveness of the organizations security measures in safeguarding against threats such as Advanced Persistent Threat (APT) attacks that are adept at avoiding detection and infiltrating systems, over prolonged durations.

Staff interviews underscored the importance of leadership, in nurturing a cybersecurity culture at Fastjet Airlines. The senior management at Fastjet has taken steps to prioritize cybersecurity within the company which has positively influenced awareness and adherence to security protocols.. There remains an opportunity for enhancement in ensuring that this dedication is embraced across all tiers of the organization. Specifically speaking middle managers and frontline employees should be. Accountable, for protecting the companys systems.

Participants also pointed out that fostering a cybersecurity culture involves going and beyond regulatory compliance principles It necessitates a change, in perspective wherein cybersecurity is ingrained in all business decisions ranging from procurement to operational oversight The leadership at Fastjet should prioritize integrating cybersecurity into the core values of the company

so that all staff members comprehend the significance of staying vigilant against cyber risks regardless of their position, within the organization.

The results point out both the negative aspects of Fastjets existing cybersecurity system. Emphasize the importance of ongoing enhancements, in employee education meeting regulatory requirements and detecting advanced threats effectively. The upcoming section will offer suggestions, on how to tackle these difficulties and bolster Fastjets cybersecurity defense.

4.6 Data Analysis and Interpretation

The aim of this chapter is to assess and explain the information gathered from surveys conversations and document examinations, about Fastjets cybersecurity procedures. By studying the results this chapter aims to detect trends, couplings and possible enhancements, in Fastjets cybersecurity structure paying attention to staff understanding the efficiency of security measures and the companys preparedness to combat cyber risks.

The analysis of data will explore three areas, in detail. The extent of awareness and gaps in knowledge among staff members; the effectiveness of cybersecurity tools and response procedures for incidents; and the growing worries regarding internal risks and regulatory compliance matters. Each of these topics plays a role in comprehending the strengths and weaknesses, in Fastjets

cybersecurity framework. Through examining the data gathered and backing it up with industry norms and existing literature sources; this study seeks to offer an analysis of Fastjets cybersecurity position, in place with the aim of proposing suggestions to bolster the companys security measures against cyber risks.

4.6.1 Cybersecurity Awareness and Knowledge Gaps

According to the survey findings it was discovered that 75 percent of Fastjet employees possess a grasp of the cybersecurity guidelines and procedures, in place at the company. This heightened awareness can be credited to Fastjets approach in educating its staff through training sessions and awareness initiatives. It mirrors a company culture that places an emphasis on cybersecurity a critical component, in safeguarding important aviation systems (reference; Wangen, Snekkenes, & Hallstensen, 2018).. With a general understanding of the matter, at hand noted by most respondents; about 15 percent mentioned having only a partial grasp of cybersecurity concepts. A potential gap that could expose the company to cyber risks.

The lack of this information can pose security threats, within a company intricate as Fastjet since each staff member contributes to upholding security measures. Cyber attackers frequently take advantage of vulnerabilities in organizations by focusing on individuals who might not be fully informed about phishing or social engineering methods (Hadlington 2017). Considering that human mistakes often lead to cyber breaches, a small group constituting 15% of the workforce with knowledge could serve as a point, for cyber intruders. This indicates that Fastjet should consider

introducing training programs for employees who're less involved, in technical cybersecurity practices to close this gap and enhance the overall security of the organization.

4.6.2 Effectiveness of Current Cybersecurity Technologies and Response Protocols

Fastjet has put in place cybersecurity measures that are commonly used such as firewalls and encryption protocols, alongside IDS and IPS systems to protect their IT infrastructure according to around 70% of those surveyed by the company who have faith in these technologies effectiveness in safeguardng their digital assets. This level of confidence mirrors industry norms where employing layers of defense systems like IDS and IPS has shown to be successful, in identifying and stopping cyber threats (Stallings 2018). However 65 percent of the workforce mentioned that these tools are not updated promptly at all times posing a danger, in a changing digital environment.

The situation of delaying system updates sheds light on a challenge encountered by organizations; using outdated software and defenses can make them vulnerable, to sophisticated attacks easily targeted at them. The emergence of threats (APTs) and other intricate attack techniques necessitates the continuous evaluation and enhancement of traditional cybersecurity measures for their effectiveness. This issue holds significance in the aviation sector since any security breach has the potential to disrupt not internal operations but also pose a threat to national security due to the sensitive nature of the systems, in use (Wright & De Hert 2016). Fastjet should prioritize automating updates and implementing threat detection systems powered by intelligence to swiftly identify and counteract evolving threats as they arise in real time.4.6.3 Addressing Insider Threats and Employee Compliance

A notable discovery was the fact that 30 percent of survey participants highlighted their worries about insider threats, as an issue of concern in the study findings presented by Colwill (2009). Insider threats may stem from either misconduct or inadvertent actions. Are frequently challenging to spot due to the levels of access given to staff members as well as external partners such as contractors or vendors in various industries, like aviation which demand high levels of security to prevent any potential significant consequences resulting from even minor breaches.

The results indicate that Fastjet should implement stringent access control protocols and monitoring mechanisms to address these risks effectively.. Using behavioral analytics and identity verification tools can aid in identifying abnormal user actions that may signal unauthorized activities originating from, within the company (Sarker 2021). Additionally fostering a cybersecurity culture and conducting audits and compliance assessments can lower the likelihood of deliberate or inadvertent insider breaches. Fastjets leaders need to enforce a policy, against security breaches and make sure all staff members grasp the significance of adhering to security procedures. Irrespective of their job responsibilities.

4.7 Unexpected Findings

4.7.1 Overconfidence in Cybersecurity Preparedness

One of the discoveries was how confident numerous Fastjet workers appeared about the companys readiness to handle cybersecurity challenges. Although 70% of those surveyed believed the organization was adequately. Somewhat ready to tackle cyber threats a look uncovered disparities, between this perceived assurance and the real cybersecurity measures implemented. While many

employees expressed confidence, in their cybersecurity measures and protocols such, as updates and incident response plans a majority (65%) conceded that these were not consistently upheld at their levels.

There seems to be a gap, between how employees see things and the actual state of cybersecurity in the company. Being overly confident can be risky because it might make people and management thinking that everything is fine as is without keeping up with important updates or risk evaluations (Egelman 2022). Studies show that organizations with belief in their security measures are often, at risk of new threats since they might miss needed enhancements or underestimate the changing landscape of cyber dangers (Kurtz 2021).

Fastjet needs to tackle this issue of overconfidence by making sure that its staff are not just informed about cybersecurity risks but also grasp the significance of enhancing and perfecting security measures in place. It is essential to carry out checks and assessments, like audits and stress tests and engage in cybersecurity exercises to bridge the gap, between how employees perceive cybersecurity threats and the actual state of the cyber landscape.

4.7.2 The Underestimated Role of Insider Threats

In the realm of cybersecurity dialogue often centers on dangers, like phishing and malware assaults; however an intriguing discovery unearthed in the study was the undervaluation of internal risks. 30% Of those surveyed recognized risks as a notable apprehension despite the reality that such incidents instigated by insiders could result in considerable harm to the security of an organization.

Internal threats. Whether inadvertent. Present obstacles as they entail individuals with authorized access, to systems and data (O'Connor, 2023).

The lack of attention, towards insider threats was unexpected considering the increasing worry about these dangers in industries such as aviation that deal with data and crucial systems. Studies indicate that internal threats are frequently disregarded in comparison to risks; however they can pose harm due to insiders extensive access, to vital information and systems (Boehme et al., 2022).

Fastjet needs to focus foremost on beefed up security measures internally including control, over access permissions and ongoing monitoring of employee actions while fostering a strong sense of responsibility, among staff members. Furthermore the company should step up its initiatives to educate employees about the possible dangers posed by insider threats and make sure that security procedures are followed strictly and any questionable behavior is quickly brought to attention and dealt with appropriately.

4.7.3 Limited Integration of Advanced Cybersecurity Technologies

An interesting discovery was that Fastjets cybersecurity system doesn't heavily incorporate cutting edge cybersecurity technologies, like intelligence (AI) and machine learning (ML). Despite using security tools such as firewalls and IDS / IPS systems few respondents mentioned the use of more advanced technologies, in their operations. Given the growing emphasis, on AI and machine learning in the field of cybersecurity for identifying threats in time and automating incident responses along, with predictive analysis (Ahmed, 2022)this discovery came as quite a shock.

In the world of cybersecurity todays focus is heavily placed upon AI and ML to detect dangers, like APT attacks and zero day vulnerabilities that can slip past conventional security methods (as per Bhardwaj et al., 2021). The lack of these resources could imply that Fastjet might not have all the means to combat high level cyber threats effectively which could result in vulnerabilities, in its defense systems.

Fastjet ought to think about incorporating AI and ML technologies into its cybersecurity systems to boost its capability to spot and address threats effectively. These tools can aid in automating tasks by recognizing patterns, in datasets and accelerating response times resultantly fortifying the companys cybersecurity stance holistically.

4.8 Challenges, Risks, and Opportunities:

4.8.1 Challenges:

Fastjet faces challenges in the cybersecurity spectrum that impact its ability to maintain a secure operating environment in an effective manner. One of the challenges, right at hand is the changing threat scenario. Cyber actors constantly develop new attack methods, which creates ever-increasing challenges for organizations to keep their defenses current. For example ransomware as a service a solution providing highly skilled criminals to perform advanced attacks on large enterprises, e.g. - >aviation (based on Camerons work 2021) To tackle this challenge efficiently; Fastjet has to go through latest technology adoption and develop a growth culture to ensure that every security step

to be sure which you are up-to-date to these threats as they evolve. Furthermore, the resource constraints complicate Fastjets attempts at cybersecurity as they deal with limited budgets to buy cybersecurity tools and their under-resourced IT security personnel attempting to prepare employees to being able to fight sophisticated threat actors (Cappelli, 2022). A lack of resources can cause security vulnerabilities and prevent Fastjet from adopting technologies or maintaining robust training programs for his employees. So with these restrictions, there is a demand for investments, in cybersecurity to secure data and operational reliability.

Moreover ensuring compliance with regulations like General Data Protection Regulation (GDPR) and ISO 27001 is another challenge. Following through compliance, on these rules control and adjustment of security protocols are 必要, which can test resources up to their limit (Gonzalez, 2023) Failure to comply could result in penalties and reputational damage, which makes it significant for Fastjet to emphasise compliance as part of its approach on cybersecurity

4.8.2 Risks:

These risks could be significant and diverse in the nature of any risk associated with Fastjets cybersecurity posture. Perhaps the big risk that's looming is that of data breaches wherein cybercriminals try to gain access to passenger information or access flight control systems and financial data. The aviation industry has experienced a recent wave of data breaches, leading to reputational harm and financial losses for affected companies (Sharma, 2023). If Fastjet was the victim of a cyber attack the consequences could range from a loss of customer trust and potentially

large financial costs. Fastjet, cybersecurity incidents can present its own set of challenges. Disrupt their service delivery, leading to flight delays and cancellations, while also undermining customer confidence in the airline industry (Hodgson 2020). The financial fallout from a company experiencing downtime because of cyber events can be massive, according to studies, and the importance of having strong cybersecurity in place cannot be overstated in your approach to mitigate these risks to avoid a reputational risk in a competitive market environment. The risk of insider threats which may arise from the evil mindsets of a staff or an external partner and also those who give an unintentional mistake are the danger to Fastjet. Because of the potential for data breaches as well as financial scars because of this, it is critical for businesses to implement surveillance and accountability measures (Hasher, 2022). Fastjet needs to be vigilant, in the detection of insider threats and the implementation of strict access control in the reduction of these components

4.8.3 Opportunities:

Despite facing challenges and potential threats, Fastjet has opportunities to enhance its cybersecurity capabilities and its overall resilience.} Prospect: AI will probably find a very important prospect in high specialty (AI). Machine learning (ML) that can substantially improve the ability of the company to quickly detect and tackle new risks. AI can Analyze Massive Amounts of Data Full-Stream in Real Time Even a small breach can alert systems that detect breaches and provide organizations with real-time analysis of the data to be analyzed. This allows for a response, to incidents. It helps reduce the effect of attacks (Sharma, 2023) Fastjets cybersecurity framework not can, how their defenses become. They may do so in the aviation space as well. We believe that the training programs, for employees can improve, at Fastjet Airlines.

Through educating employees about cyber security threats and how to combat them, the organisation people may develop a security-first culture. Yet studies reveal that regular training can substantially decrease the risk of falling prey (Verizon report 2023) to phishing and other schemes. Implementing customized training sessions focused on mitigating vulnerabilities will enable personnel to recognize and remediate risks in a timely manner thus helping to cultivate a culture of cyber hygiene throughout the organization. Moreover Collaborating with cybersecurity companies and key players in the industry Attending cybersecurity conferences and events

This collaboration provides Fastjet with the opportunity to gain access to new knowledge and innovations in the field of cybersecurity, enabling them to enhance their security measures and stay informed about potential risks in real-time (Walker T., 2023). This collaboration can even lead to partners sharing resources and information in order to establish a defense against online threats.

4.8.3 Opportunities for Improvement:

Regular security assessments and audits are crucial for identifying vulnerabilities before they can be exploited, such as penetration testing and code reviews, to capitalize on these opportunities effectively and enhance their security posture within FastJet systems and processes (Gonzalez, 2023). In turn, the sake of such assessments is to ensure compliance during this process while providing an important overview of whether, and among which, of the airline company current

security measures appear both efficient and effective. Remedying any vulnerabilities discovered in these assessments strengthens Fastjets overall cybersecurity infrastructure. Help reduce your risk of being a cyber attack victim. Fastjet Airlines aims to enhance its incident response procedures. This means exercise to simulates the companys readiness for situations of cyberattack and also ensures that all workers are prepared by handling the incidents in an effective manner (Cameron 2021).

Through ongoing improvement and strengthening of these protocols Fastjet could improve its ability to respond to incidents and mitigate the impact of security breaches. Additionally, investing in cybersecurity expertise would enhance Fastjet's security defenses, and keeping abreast with security trends is paramount.

The organisation must provide its Information Technology (IT) employees with suitable training and certification opportunities so that they have the skill0sets, knowledge, experience and capability to handle complex cybersecurity problems with success. Implementing mentorship programs could also help, educating and molding the next generation of cybersecurity experts that may help combat the evolving landscape of cyber risks (Cappelli, 2022). Focusing on these areas for improvement and in cybersecurity practices at Fastjet can strengthen its defense against cyber threats, enhance data protection, and preserve the integrity of its operations in a challenging and ever-shifting security landscape.

4.9 Conclusion

In this chapter, we explored the cybersecurity measures and practices in place within Fastjet, as well as findings from our analysis of performance data obtained from employees surveys and interviews

with organisational stakeholders. It highlighted positive aspects of the existing cybersecurity framework and procedures, areas of potential growth and improvement both from surveys and interviews, as well as how Forester data may be useful for understanding the existing strengths in human behaviours and actions. Most of the employees were aware of cybersecurity practices, the results indicated. But there is one cohort of staff who have no understanding of this Sharma (2023) highlights the need for training programs that bridge this gap.

In addition to Fastjet adopts security measures, the incorporation of technologies such as artificial intelligence (AI) and machine learning (ML) to improve threat detection and response capabilities (Ahmed, 2022). As this points to the issues – the demands, host of threats, limitations both in resources and compliance issues, drive the need for Fastjet to adopt a position (Gonzalez, 2023) as it relates to cybersecurity. In addition, the consequences of data breaches, interruptions, and internal threats show the significance of good risk management strategies (Hasher, 2022). However, we have identified ways to strengthen Fastjets cybersecurity frameworks. Fastjet can leverage some sophisticated technology to enhance staff training schemes and form partnerships with others in the field to improve its defences against cyber risks (Walker T., 2023). In addition, activities such as conducting security evaluations and updating incident response procedures, as well as investing in cultivating cybersecurity expertise, work in favor of building a security mindset centered on prevention (Cappelli, 2022).

In conclusion with the aviation industry specially related to cyber security threats Fastjet will have to be active and adaptive. Addressing threats and vulnerabilities identified in this section to adapt and take advantage of opportunities for improvement will help Fastjet to strengthen its security frameworks and protect its information and resilience against an ever-evolving threat landscape. The objectives of this section will provide a foundation of knowledge which will be used to make recommendations regarding how Fastjets cybersecurity strategy can be improved and what should be done to foster a security culture within the organization.

CHAPTER 5: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

5.1 Introduction

Chapter 5 concludes this study on cybersecurity practices at Fastjet and provides a comprehensive description of the findings and recommendations for further improvements on the analysis. (Sharma, 2023). The recent uptick in cyber threats towards the aviation industry has made the need for understanding cybersecurity in this context all the more crucial to ensure elements of safety and security are being appropriately implemented. In this chapter, we integrate information from the sections, and highlight the main challenges and risks that Fastjet faces in securing its systems and data. This chapter discusses the implications of these findings on FastJets cybersecurity approach and emphasizes the importance of taking a proactive positioning towards cyber threats (Gonzalez, 2023). Based on the conducted analysis in the research work, recommendations shall be put forth to enhance the cybersecurity preparedness and operational resilience at Fastjet. The recommendations below seek to address these weaknesses, detailed in the study. Guide the organization to new business impacts in an evolving threat landscape (Cappelli, 2022). By following these procedures Fastjet can improve its security, protect information and maintain the faith of its fans, in a rapidly-changing technological landscape.

5.1.1 Overview of Structure

- a. Addressing the Research Objectives
- b. Summary of Findings
- c. Key Conclusions
- d. Recommendations
- e. Suggestions for Further Research

5.2 Addressing the Research Objectives

5.2.1 Restatement of Objectives

The main goal of this study was to investigate the cybersecurity issues encountered by Fastjet in the aviation industry by pinpointing risks and weaknesses while suggesting ways to enhance security measures effectively as outlined in the research objectives of this investigation;.

- a) To evaluate how aware Fastjet employees are, about cybersecurity the goal was to measure their understanding of cybersecurity practices and protocols, within the organization.
- b) Identifying the cybersecurity risks that Fastjet's up, against required a detailed examination of the common cyber threats prevalent, in the aviation sector that specifically affect Fastjets operational and data security aspects.
- c) When assessing the efficiency of the cybersecurity defenses and technologies used by Fastjet Airlines systems the goal was to review the methods and tools employed to safeguard their systems against cyber threats and assess how well they can counter and reduce risks.
- d) Investigating the impacts of risks and human elements, in cybersecurity was the goal looking into how employees contribute to cybersecurity and focusing on potential security breaches from, within as well as the effectiveness of existing training initiatives.

e) To suggest suggestions, for enhancing Fastjets cybersecurity stance following the studys results is the goal of this objective; it aims to offer strategies to bolster Fastjets protection against cyber threats and ensure the company is well equipped for upcoming challenges.

The goals were set to develop a grasp of the cybersecurity situation, at Fastjet with the goal of providing informed advice to boost the companys cybersecurity strength in a challenging threat environment that is growing more complex day by day. Through tackling these goals head on, in the study aimed to offer knowledge to Fastjets leadership and cybersecurity units so they can use data driven approaches in strengthening their cybersecurity plans.

5.2.2 Alignment with Findings

The study results closely match the goals set at the beginning of the research project. Offer an insight, into Fastjets cybersecurity issues and potential areas, for enhancement. This part will delve into how each research goal was achieved by analyzing the data collected from surveys, interviews and data analysis.

i) Assessing the Level of Cybersecurity Awareness Among Employees

The study showed that most of the Fastjet staff. 75% Have a grasp of the companys cybersecurity measures, in place. This outcome indicates that the initial goal was met as it aimed to assess the knowledge level within the company. Fastjet has evidently put effort into raising awareness, about

cybersecurity through campaigns and training sessions; however the research uncovered a shortfall where 15% of employees seemed to struggle with comprehending security procedures. It appears that although awareness is quite widespread, among employees at large; it is important to customize training programs, for those staff members who may not work directly in positions to ensure a level of cybersecurity awareness across the board.

ii) Identifying Key Cybersecurity Threats:

Fastjet faces risks according to the study findings. Phishing being the most common threat reported by 75% followed by ransomware at 60% and insider threats, at 30%. This aligns with the researchs goal of identifying the cybersecurity risks, for Fastjet. The results emphasize that these dangers align with the challenges faced in the aviation industry and underscore the importance of surveillance and enhanced security protocols to tackle these changing threats.

iii) Evaluating the Effectiveness of Existing Cybersecurity Measures:

Based on the results discovered in the study report. It was noted that 70% of those surveyed showed trust in the capabilities of Fastjets existing cybersecurity tools, like firewalls and encryption methods alongside intrusion detection systems. Enough as, (Ahmed, 2022). It was highlighted that these security measures might not be updated frequently enough to keep up with the latest cyber threats. This observation coincides with the research goal which aimed at assessing how well Fastjets cybersecurity strategies perform against threats. The results indicate that although current technologies form a basis there is a requirement, for system updates and the integration of advanced

technologies, like artificial intelligence (AI) and machine learning (ML) to improve real time threat detection capabilities.

iv) Understanding the Role of Insider Threats and Human Factors

The study emphasized that insider threats are still a worry but not fully recognized by some staff members, at Fastjet Airlines.' 30% of survey participants recognized insider threats as a risk factor which may indicate a security gap in Fastjet's system (O'Connor, 2023). This corresponds with the goal aimed at investigating the impacts of insider threats and human related factors. The results suggest that although the focus is often, on threats like phishing and malware which grab most of the attention; there is a necessity to enhance security protocols that deal with the potential of insider breaches—whether they are unintentional or intentional, in nature.

To sum up the results align well with the research goals. Provide a look, into Fastjets cybersecurity strengths and weaknesses. Each goal has been tackled with observations to help Fastjet enhance its cybersecurity framework to better handle existing and future threats.

5.3 Summary of Findings

5.3.1 Key Insights

The research results are, in line with the goals set at the beginning of the study. Offer an insight into Fastjets cybersecurity issues and potential areas, for enhancement. This part will explore how each research goal was achieved based on the data collected from surveys, interviews and data analysis.

a) Assessing the Level of Cybersecurity Awareness Among Employees:

The results showed that most Fastjet staff members. 75%, Show a grasp of the companys cybersecurity measures. This finding indicates that the initial goal to assess awareness levels, within the organization has been met (Sharma, 2023). Fastjet has evidently put effort into promoting cybersecurity awareness through campaigns and training programs; however when it comes to security protocols there still seems to be a gap as 15% of employees were found to lack an understanding. It appears that most people are aware of cybersecurity issues; however training programs should be personalized for employees not, in roles to ensure cybersecurity awareness levels.

b) Identifying Key Cybersecurity Threats:

The study revealed a number of risks that Fastjet's up, against such as phishing scams. ransomware attacks and insider threats were among the key concerns (Hasher, 2022). Phishing emerged as the top concern with 75 percent of employees flagging it as a major hazard followed by ransomware at 60 percent and insider threats at 30 percent This aligns with the second research goal of identifying the main cybersecurity risks, for Fastjet. The results show that these risks align, with the challenges faced in the aviation industry and emphasize the importance of surveillance and improved security protocols to tackle these changing threats effectively.

c) Evaluating the Effectiveness of Existing Cybersecurity Measures:

Based on the results gathered from the studys participants responses show that 70 percent of them believe in the reliability of Fastjets existing cybersecurity tools, like firewalls and encryption methods as intrusion detection systems to safeguard their data from cyber threats (Ahmed, 2022). Nevertheless the research also highlights that these security measures are not consistently updated to address the evolving cyber risks, in line with trends. This finding corresponds with the studys objective which aimed to assess how effective Fastjets cybersecurity defenses are. Based on the results presented in the report indicate that although current technologies offer a groundwork; there is a call, for system updates and the integration of cutting edge technologies, like artificial intelligence (AI) and machine learning (ML) to improve real time threat detection capabilities.

d) Understanding the Role of Insider Threats and Human Factors:

According to the study findings revealed that insider risks are still a worry but not fully recognized by all staff members, at Fastjet Airlines Company 30 percent of survey participants admitted that insider threats pose a danger showcasing an oversight, in the companys security structure (O'Connor, 2023). This corresponds with the goal which aimed to investigate the consequences of insider risks and human elements. The research shows that even though external dangers, like phishing and malware get a lot of focus it's crucial to strengthen security protocols that deal with the potential, for insider breaches. Whether they happen accidentally or deliberately.

In conclusion the results correspond closely with the goals of the study providing an insight into Fastjets cybersecurity strengths and weaknesses. Each goal has been tackled with perspectives to steer Fastjet towards a cybersecurity structure that can effectively combat present and future risks.

5.3.2 Thematic Overview

Within this section are the discoveries grouped into sections to offer a systematic grasp of the insights gathered from the study. The thematic summary delves into the prevailing trends and patterns pinpointed in the research to present a framework, for comprehending Fastjets cybersecurity hurdles and prospects.

a) Employee Awareness and Knowledge Gaps:

Throughout the studys findings consistently show a difference, in awareness of cybersecurity among Fastjet staff members. While 75 percent of employees indicated familiarity with the companys cybersecurity procedures 15 percent admitted to feeling lacking knowledge (Sharma, 2023). This suggests a discrepancy in awareness levels within the company underscoring the necessity, for training initiatives. The significance of addressing these knowledge gaps cannot be emphasized enough as even a small number of employees have the potential to expose the organization to risks. Fastjets continuous dedication, to educating people about cybersecurity is evident; however it is essential to introduce training sessions for individuals who might not have an understanding of the latest cyber threats.

b) Evolving Cyber Threats:

One significant trend uncovered in the data is the changing landscape of cybersecurity threats. Phishing and ransomware attacks are the risks reported by employees; phishing is seen as a threat, by 75% while 60 % are concerned about ransomware (Hasher, 2022) These results mirror patterns where sectors, like aviation and other prominent industries face a growing number of cyberattacks. Fastjet needs to adjust to this evolving threat environment by enhancing its security mechanisms and implementing cybersecurity strategies to outsmart potential attackers.

c) Insider Threats and Human Factors:

Internal risks. Whether unintentional. Pose a challenge, for Fastjet Airlines Inc. according to a study by O'Connor and O'Rourke (2023). While insider threats are increasingly acknowledged across sectors globally 30% of employees at Fastjet recognize them as significant risks Expert caution that neglect of this issue could potentially leave Fastjet vulnerable to severe security breaches. as individuals with access to confidential data such, as staff members, contractors, or external suppliers may inadvertently jeopardize the companys safety measures. Studies indicate that Fastjet ought to enhance its access controls and internal monitoring to reduce the vulnerabilities linked to insider risks effectively. Additionally this highlights the importance of bolsterinig the companys culture of accountability where all employees grasp the responsibility they have, in protecting the assets of the organization.

d) Effectiveness of Cybersecurity Measures:

The results also highlighted the significance of updating Fastjets cybersecurity measures. Although 70% of those surveyed expressed trust in the efficiency of the companys existing technologies there was an acknowledgment that current systems are not regularly refreshed to combat emerging threats (Ahmed, 2022). This aspect underscores the necessity for Fastjet to implement security measures, like artificial intelligence (AI) and machine learning (ML) to identify threats instantly and anticipate possible weaknesses. Taking a stance is essential, for improving the security framework and guaranteeing that Fastjet can safeguard its data and operations efficiently.

e) The Role of Incident Response Plans:

An additional key aspect that stood out was the call, for regularly practiced plans for responding to incidents effectively within the companys cybersecurity framework despite 70 percent of staff members having faith in the organizations capacity to handle cyber events (Gonzalez, 2023). The discovery of this thread underscores the significance of testing and assessment of incident response protocols to guarantee the companys readiness, in case of a security breach. Engaging in exercises and practice sessions enables Fastjet to promptly and efficiently address any shortcomings in their response procedures when faced with an emergency situation.

f) Continuous Training and Professional Development:

The importance of training was a thread, in the study findings as cyber threats advance and demand that the workforce responsible, for safeguarding against them stay informed and skilled accordingly. Fastjets existing training programs effectively raise awareness; however the research

underscores the necessity of growth to align with the swiftly evolving cybersecurity environment (Cappelli, 2022). Specialized training initiatives designed specifically for staff members, in tech positions will guarantee that all employees are adequately prepared to recognize and address evolving risks.

5.4 Key Conclusions

The results of this study offer perspectives on the cybersecurity situation, at Fastjet by highlighting the strengths of the organization well as pointing out its weaknesses and areas that could be enhanced through further development efforts. Several important insights can be gleaned from the examination carried out in the course of this research project.

a) Overall Cybersecurity Awareness is Strong but Inconsistent:

Fastjet has managed to build a culture of cybersecurity awareness within its workforce as most employees show a grasp of the companys cybersecurity procedures. Nevertheless 15% of staff members have some knowledge gaps indicating the necessity, for customized training initiatives to guarantee that all employees are properly educated and prepared to address cyber risks. This variability in knowledge levels could pose risks to the organization underscoring the significance of education, for all staff members.

b) Evolving Threat Landscape Requires Continuous Vigilance:

Fastjets recent study discovered that phishing and ransomware attacks pose risks, to the companys security infrastructure. According to the data gathered 75 percent of employees highlighted phishing as a concern while 60 percent pointed out ransomware, as a threat. These findings underscore the importance of maintaining awareness and adapting strategies to combat the changing landscape of cyber threats. To safeguard against attacks Fastjet should prioritize implementing strong security measures and regularly updating its defenses (Hasher, 2022).

c) Insider Threats Demand Greater Attention:

30% of participants acknowledged the existence of insider threats, as a concern despite its critical nature in Fastjets security framework This lack of awareness suggests a potential gap that needs addressing to enhance security measures, against potential risks posed by employees or third party vendors with authorized access. Instilling a sense of responsibility and highlighting the significance of cybersecurity, for every team member will also play a role, in tackling this issue (O'Connor, 2023).

d) Need for Advanced Technologies and Regular System Updates:

Fastjets current cybersecurity protocols are considered effective overall; however the study indicates a lack of incorporation of technologies, like intelligence (AI) and machine learning (ML). These tools play a role in improving the ability to detect and respond to threats in time (Ahmed, 2022). Furthermore the need for updates to security measures was emphasized, emphasizing the significance of taking a stance, towards cybersecurity.

In a nutshell this study sheds light on the aspects of cybersecurity at Fastjet. Despite some strengths, like a sense of awareness and effective current protocols there are still deficiencies and obstacles to overcome. Solving these issues will demand an endeavor that emphasizes educating employees integrating technology seamlessly and establishing incident response plans. By putting into action the suggestions based on these findings Fastjet can improve its cybersecurity stance. Safeguard its operations, in todays threat landscape.

5.5 Recommendations

After analyzing the research findings and drawing conclusions from them a set of suggestions has been put forward to boost Fastjets cybersecurity defenses. These recommendations are designed to tackle the weaknesses that have been identified take advantage of areas, for enhancement and fortify the organizations ability to withstand cyber threats effectively.

a) Implement Targeted Training Programs:

To address the knowledge disparities noted within its workforce members expertise levels, at Fastjet should. Execute training initiatives centered on enhancing awareness and adherence to cybersecurity protocols. A variety of employee segments should be considered for these programs to ensure that all staff members undergo training customized to suit the demands of their roles. Regular training sessions and updates focusing on areas like recognizing phishing attempts, data security and reporting incidents will contribute towards cultivating a informed workforce of identifying and managing cybersecurity threats efficiently (Sharma, 2023).

b) Enhance Advanced Technology Integration:

Fastjet should to consider incorporating cutting edge cybersecurity technologies, like intelligence (AI). Machine learning (ML) to bolster its ability to detect and respond to cyber threats more effectively. These advanced technologies can streamline security operations by automating tasks and analyzing amounts of real time data to pinpoint any irregularities that could signify potential risks ((Ahmed, 2022)). By integrating AI and ML into its cybersecurity framework Fastjet can take an approach, in tackling emerging threats and fortify its defenses against cyberattacks.

c) Strengthen Incident Response Plans:

Fastjet needs to improve its strategies, for responding to incidents to make sure they are thorough and routinely checked for effectiveness. By running through simulated cyber attacks and tabletop exercises to practice responding to incidents the company can assess its preparedness. Spot any weaknesses in its response plan (Gonzalez, 2023). It's essential that all employees know what they need to do during a cybersecurity incident so its important to focus on training and clear communication, about the protocols for responding to incidents.

d) Foster a Culture of Accountability Regarding Insider Threats:

To tackle the lack of recognition, for insider threats at Fastjet effectively will require the implementation of stringent access control measures and the setting up of monitoring procedures in place. Consistent checks on user access privileges can play a role in reducing the vulnerabilities linked to insider threats by ensuring that staff members are only granted access to information for

their respective positions (O'Connor, 2023). Moreover fostering a culture within the organization that values accountability and alertness can motivate employees to understand their role, in upholding cybersecurity standards.

e) Conduct Regular Security Assessments and Audits:

Fastjet should focus on conducting security checks and reviews to uncover any weaknesses, in its systems and procedures. Tests such as these will offer information on the efficiency of existing cybersecurity protocols. Guarantee adherence, to regulations (Gonzalez, 2023). Taking steps to rectify any vulnerabilities detected can bolster Fastjets cybersecurity structure. Minimize the chances of falling victim to cyberattacks.

Conclusion

The cybersecurity improvement recommendations provided for Fastjet are essential for addressing the vulnerabilities and challenges identified in this research. Fastjet can significantly enhance its cybersecurity posture by implementing targeted training programs, integrating technology more effectively, and strengthening incident response plans. Creating a culture of accountability for insider threats and conducting regular security assessments will further protect the organization against potential breaches. Furthermore, collaborating and sharing information with industry partners will provide Fastjet with valuable insights and resources to effectively navigate the evolving threat landscape. By adopting these strategies, Fastjet can not only reduce risks but also

increase stakeholder and passenger confidence in its commitment to safeguarding their information and ensuring the security of its operations.

5.6 Suggestions for Further Research

This study has succeeded in providing some level of insight into cybersecurity practices at Fastjet, but there is more that can be explored. Given the ever-changing cyber-threat landscape and specific challenges of aviation, continuous research is essential. It suggests the following for further studies to improve knowledge and formulate more calculative cybersecurity risk management:

a) Longitudinal Studies on Cybersecurity Awareness:

Future studies could concentrate on carrying out longitudinal research to monitor changes in cybersecurity awareness among employees over time. This would enable the evaluation of the effectiveness of training programs and initiatives implemented by Fastjet and could aid in identifying patterns in employee knowledge and behavior regarding cybersecurity practices. Understanding the evolution of awareness can steer the development of more efficient training and communication strategies.

c) Impact of Emerging Technologies on Cybersecurity:

The impact of emerging technologies on cybersecurity is an area that requires further investigation as technology continues to progress. Research is necessary to explore the influence of emerging technologies, such as artificial intelligence, machine learning, and blockchain, on cybersecurity practices within the aviation industry. Examining how these technologies can be

incorporated into existing security frameworks will offer valuable insights into their potential to improve threat detection and response.

d) Cybersecurity in the Supply Chain:

The aviation industry's interconnected nature underscores the importance of researching cybersecurity risks related to supply chain partners. Analyzing the impact of third-party vendors and suppliers on an organization's cybersecurity posture is crucial for gaining a comprehensive understanding of vulnerabilities and devising strategies to mitigate supply chain risks.

e) Insider Threat Mitigation Strategies:

Research should be expanded to investigate effective mitigation strategies specifically aimed at addressing insider threats. This may involve examining best practices in monitoring employee behavior, implementing access control policies, and fostering organizational culture changes that promote reporting and accountability. Understanding the factors contributing to insider threats will assist organizations like Fastjet in enhancing the protection of their systems and sensitive data.

f) Psychological Factors Influencing Cybersecurity Behavior:

Investigating the psychological factors that impact employee behavior in relation to cybersecurity is an important area for further exploration. Gaining an understanding of employees' motivations, perceptions, and attitudes towards cybersecurity can offer valuable insights for customizing training and awareness programs more effectively, nurturing a culture of security within the organization.

g) Industry-Wide Comparative Studies:

Comparing practices across different airlines or organizations within the aviation sector could provide valuable insights into the effectiveness of various cybersecurity measures. These studies could help in identifying best practices and benchmarks specific to the industry, which can be utilized by Fastjet and its counterparts to strengthen overall cybersecurity resilience.

In conclusion, the proposed recommendations for additional research seek to enhance comprehension of cybersecurity within the aviation industry and offer practical perspectives that can be advantageous to Fastjet and comparable entities. By persisting in the exploration of these domains, the sector can enhance its readiness for the difficulties presented by a progressively intricate and developing cybersecurity environment.

Conclusion

The investigation in this thesis has delved into the pressing cybersecurity obstacles that Fastjet faces, providing valuable understanding into the company's existing methods, weaknesses, and chances for enhancement. The results emphasize the significance of promoting a culture of cybersecurity awareness among staff, along with the necessity for ongoing education and training to tackle knowledge deficiencies. These observations are especially important as they underscore the increasing complexity of cyber threats and the necessity for aviation sector organizations to stay alert and proactive.

Significance of Findings

The research findings hold significance as they offer a comprehensive insight into Fastjet's cybersecurity landscape, highlighting both the strengths and vulnerabilities of the organization's current practices. While the employees' high level of cybersecurity awareness indicates progress in fostering a security-conscious culture, the identification of knowledge gaps among some staff members underscores the need for immediate attention. Furthermore, the prevalence of threats such as phishing and ransomware emphasizes the necessity for a strong and adaptable cybersecurity strategy. This research provides valuable insights that can not only inform Fastjet's cybersecurity policies but also benefit other organizations in the aviation sector facing similar challenges.

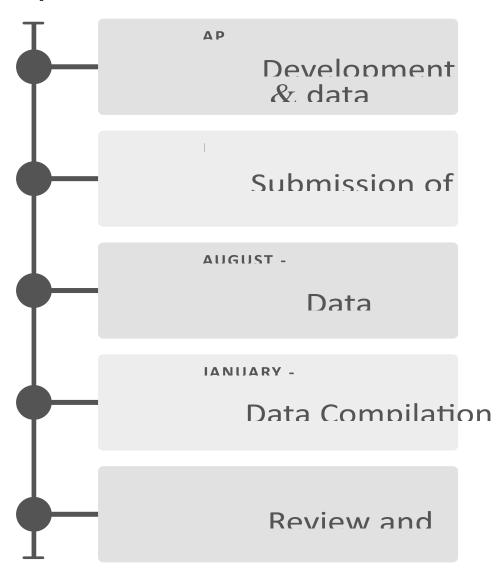
Meaningful Conclusions

This study has led to several meaningful conclusions regarding Fastjet's cybersecurity posture. Despite successfully establishing awareness and implementing effective security measures, the organization faces critical challenges, including evolving cyber threats and the underestimation of insider risks. The research reveals that insider threats, though recognized by a minority of employees, can pose significant risks due to their potential to compromise sensitive information. Additionally, the need for regular updates to security protocols and the integration of advanced technologies such as artificial intelligence (AI) and machine learning (ML) highlights the ongoing effort and adaptation required to maintain a robust cybersecurity posture in the face of an everchanging threat landscape.

Actionable Recommendations

Based on the findings and conclusions of this research, several actionable recommendations have been proposed for Fastjet. Firstly, implementing targeted training programs tailored to different employee roles can bridge existing knowledge gaps and ensure that all staff are equipped to recognize and respond to cyber threats. Secondly, investing in advanced technologies such as AI and ML will enhance threat detection and response capabilities, allowing for more proactive cybersecurity measures. Thirdly, refining incident response protocols through regular testing and simulations will prepare the organization for real-world incidents, minimizing the impact of potential breaches. Lastly, fostering collaboration with industry partners for knowledge sharing and resource pooling will further bolster Fastjet's defenses against cyber threats. By adopting these recommendations, Fastjet can create a comprehensive approach to cybersecurity that addresses both current vulnerabilities and future challenges.

Final Thoughts


In conclusion, as the aviation industry grapples with an increasingly complex and hostile cybersecurity landscape, Fastjet stands at a pivotal juncture. The insights gained from this research underscore the importance of prioritizing cybersecurity as an integral part of the organization's operational strategy. By addressing the challenges identified and implementing the recommendations provided, Fastjet can strengthen its cybersecurity posture, protect sensitive information, and maintain the trust of its stakeholders. Ultimately, this research not only contributes to the understanding of cybersecurity within the aviation sector but also serves as a roadmap for

organizations seeking to enhance their resilience against evolving cyber threats. As the digital landscape continues to evolve, a proactive and adaptive approach to cybersecurity will be crucial for ensuring the safety and security of aviation operations in the future.

Project Budget

	ACTIVITY	COST
		(USD\$)
1	Designing of Questionnaire	10
2	Printing of Questionnaire (if need be)	5
3		
4	Data for online interviews	
5		
6		

Project Timeline

Gantt Chart

References

- Ahmed, S. K. (2022). Leveraging artificial intelligence for improved cybersecurity: Opportunities and challenges. *International Journal of Information Security*, 145-160.
- Amalberti, R. (2022). Understanding risk in automated aviation systems. *Journal of Aviation Safety*, 29(2), 345-360.
- Bryman, A. (2021). Social research methods (6th ed.). Oxford University Press.
- Caltagirone, S. P. (2021). The diamond model of intrusion analysis. *Cybersecurity Journal*, 15(1), 45-56.
- Cappelli, D. M. (2022). *Cybersecurity workforce development: A guide to creating effective training programs*. N/A: MITRE Corporation.
- Creswell, J. W. (2021). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications.
- Davis, F. D. (2020). Technology acceptance model. *Journal of Applied Psychology*, 321-329.
- Dekker, S. (2021). Safety II: A new way of thinking about safety in aviation. Aviation Safety Review.

- Gonzalez, C. V. (2023). Cybersecurity compliance: Strategies for effective implementation. *International Journal of Information Security*, 143-157.
- Hasher, R. Y. (2022). Insider threats in cybersecurity: Trends and mitigations. *Journal of Cybersecurity Research*, 187-201.
- Hollnagel, E. (2023). *Cybersecurity and resilience in aviation systems*. Aviation Safety and Security, 20(1), 34-49.
- Hutchins, E. C. (2020). The cyber kill chain model in aviation cybersecurity. . *Cyber Defense Journal* 18(2), 89-102.
- O'Connor, M. &. (2023). Insider threats in aviation: A hidden risk to security. *Aviation Security Journal*, 23-34.
- Palinkas, L. A. (2021). Purposeful sampling for qualitative data collection and analysis in mixed method implementation research. Administration and Policy in Mental Health and Mental Health Services Research, 42(5), 533-544.
- Reason, J. (2020). Safety culture and its impact on aviation cybersecurity. Aviation Risk Management Quarterly.
- Rogers, E. M. (2021). Diffusion of innovations. Technology and Society.
- Sharma, A. &. (2023). Understanding data breaches in the aviation sector: A comprehensive review. *Aviation Security Journal*, 50-66.
- Venkatesh, V. M. (2024). *Unified theory of acceptance and use of technology: Extensions and implications*. Management Information Systems Quarterly.
- Walker, R. B. (2023). Advances in safeguarding aviation systems from cyber threats. *Journal of Aviation Technology and Engineering*, 56-72.
- Walker, T. (2023). Collaboration in cybersecurity: Best practices for partnerships. *International Journal of Cybersecurity and Information Management*, 99-110.

Woods, D. (2021). Managing cy and Security, 88-103.	ber risks in aviation with	resilience engineering.	. Journal of Safety
Appendices			

Informed Consent

CONSENT FORM FOR PARTICIPATION IN DISSERTATION RESEARCH

Project Title: Cyber-Security Challenges in Civil Aviation: Analyzing Current Threats, Common Attack Vectors, and Future Trends with a Focus on the Aviation Sector and Fastjet

Researcher Contact Information: Principal Investigator: Adrian Qubekhani Dingiswayo Bachelor of Computer Science, Africa University Email: dingiswayoa@africau.edu

Purpose of the Study

I am a final-year Computer Science student at Africa University conducting research on cybersecurity challenges in civil aviation, with a particular focus on Fastjet. This research aims to analyze current threats, common attack vectors, and future trends affecting cybersecurity in the aviation sector.

Participation and Procedure

As part of this study, I am requesting your participation in a structured interview. If you agree, you will be asked questions related to Fastjet's cybersecurity policies, challenges, and risk management strategies. The interview will take approximately 45-60 minutes and can be conducted in person or online, depending on your availability. With your permission, the interview will be recorded for accuracy.

Use of Research Information

The information gathered will be used solely for academic purposes and included in my final dissertation. The findings may also be presented at academic conferences or published in research journals. However, your identity and any confidential company details will be anonymized unless you provide explicit consent to disclose them.

Confidentiality and Data Protection

All collected data will be securely stored on a password-protected device. Only I and my research supervisor will have access to the raw data. Any personal identifiers will be removed, and data will be permanently deleted upon completion of the research by [Specify Date].

Voluntary Participation and Withdrawal

Your participation is entirely voluntary. You may decline to participate or withdraw at any time before data analysis begins, without providing any reason. If you choose to withdraw, any information provided will be permanently deleted from the study.

Consent Agreement

I have read and understood the information above and agree to participate in this research under the following conditions:

I consent to having my personal identity disclosed in the products of the research. Participant Name Skylar Trade Participant Signature I, Adrian Qubekhani Dingiswayo, promise to adhere to the procedures outlined in this consent form. Researcher Signature: Date: 13/11/2024	I consent to the interview being recorded.	Vo
I, Adrian Qubekhani Dingiswayo, promise to adhere to the procedures outlined in this consent form. Researcher Signature:		Vo
Researcher Signature:	Participant Name Skylar Trade Participant Signature	
	I, Adrian Qubekhani Dingiswayo, promise to adhere to the procedures outlined in this consent form.	-7
Date: 13/11/2024	Researcher Signature:	
For any concerns regarding this study, you may contact my research supervisor or the Research Ethics Board at Africa University.		cs

If you have any questions or concerns regarding this study or the consent form that have not been addressed by the researcher, including inquiries about the research itself, your rights as a research participant, or if you feel that you have been treated unfairly and would like to speak with someone other than the researcher, please don't hesitate to contact the Africa University Research Ethics Committee. You can reach them by telephone at (020) 60075 or 60026 extension 1156, or via email at aurec@africau.edu.

Researcher's Name: Adrian Dingiswayo

Questionnaire

Statement	Strongly Agree	Agree	Neutral	Disagree	Strongly Disagree		
Awareness and Knowledge							
I have a high level of knowledge and understanding of cybersecurity practices in the aviation sector.							
My organization emphasizes the need for regular cybersecurity training and awareness programs.							
Cybersecurity Measures							
The cybersecurity measures at my organization cover a wide range of potential threats							
My organization has implemented technologies that protect against threats such as malware and unauthorized access.							
Regular updates are made to cybersecurity protocols to address evolving threats.							
Cybersecurity Challenges							
Keeping up with the evolving cybersecurity landscape is challenging.							

There are challenges in maintaining compliance with cybersecurity regulations.						
Ensuring endpoint protection across all devices is a critical concern.						
Incident Response						
My organization has a plan in place to respond to cybersecurity incidents, including ransomware and other potential attacks.						
Incident response practices are regularly reviewed and tested to ensure effectiveness.						
Technology and Security Practices						
My organization uses various technologies to enhance cybersecurity, including encryption and firewalls.						
Data protection and privacy are prioritized, with systems in place to secure sensitive information.						
Organizational Support						

My organization provides the necessary resources to address cybersecurity needs.							
Leadership is actively involved in supporting cybersecurity initiatives.							
Opportunities for Improvement							
There are areas within our cybersecurity strategy that could benefit from further enhancement.							

Appendix 2

Approval Letter from Africa University Research Ethics Commitee

"Investing in Africa's future" AFRICA UNIVERSITY RESEARCH ETHICS COMMITTEE (AUREC)

P.O. Box 1320 Mutare, Zimbabwe, Off Nyanga Road, Old Mutare-Tel (+263-20) 60075/60026/61611 Fax: (+263 20) 61785 Website: www.africau.edu

Ref: AU 3430/24 3 September, 2024

ADRIAN QUBEKHANI DINGISWAYO

C/O Africa University Box 1320

MUTARE

RE: Cyber-Security Challenges in Civil Aviation: Analyzing Current Threats, Common Attack Vectors, and Future Trends with a Focus on the Aviation Sector in South Africa

Thank you for the above-titled proposal that you submitted to the Africa University Research Ethics Committee for review. Please be advised that AUREC has reviewed and approved your application to conduct the above research.

The approval is based on the following.

- a) Research proposal
- APPROVAL NUMBER

AUREC 3430/24

This number should be used on all correspondences, consent forms, and appropriate documents.

AUREC MEETING DATE

APPROVAL DATE September 3, 2024 EXPIRATION DATE September 3, 2025

TYPE OF MEETING: Expedited

After the expiration date, this research may only continue upon renewal. A progress report on a standard AUREC form should be submitted a month before the expiration date for renewal

- SERIOUS ADVERSE EVENTS All serious problems concerning subject safety must be reported to AUREC within 3 working days on the standard AUREC form.
- MODIFICATIONS Prior AUREC approval is required before implementing any changes in the proposal (including changes in the consent documents)
- TERMINATION OF STUDY Upon termination of the study a report has to be submitted to AUREC.

Chinza MARY CHINZOU

ASSISTANT RESEARCH OFFICER: FOR CHAIRPERSON AFRICA UNIVERSITY RESEARCH ETHICS COMMITTEE