

Original Article

AI-Driven Decision-Making for Sustainable Industrialization in Africa

Yogesh Awasthi¹, Talon Garikayi², Elizabeth Mafu³

^{1,2,3}Department of Artificial Engineering, Software Engineering and Computer Science, Africa University, Zimbabwe.

Received Date: 05 September 2025

Revised Date: 29 September 2025

Accepted Date: 26 October 2025

Abstract: Artificial Intelligence (AI) is rapidly reshaping industrial systems worldwide, offering unprecedented opportunities for sustainable development in Africa. This study examines how AI-driven decision-making can enhance sustainable industrialization across key African economies by improving efficiency, reducing waste, and supporting environmentally responsible practices. Using a mixed-methods approach, data were collected from 40 firms across Kenya, Nigeria, South Africa, and Zimbabwe, revealing that AI adoption remains moderate but uneven across sectors and countries. Agriculture and energy sectors demonstrate relatively higher adoption levels due to targeted innovation programs and sustainability-driven imperatives such as precision farming and energy optimization, while the manufacturing sector lags because of high costs, limited infrastructure, and a shortage of skilled professionals. The study finds that organizations using AI reported measurable benefits, including a 20% reduction in material waste, a 15% increase in productivity, and forecasting accuracy improvements up to 87%. However, adoption is constrained by persistent challenges such as inadequate digital infrastructure (64%), high implementation costs (63%), limited human capital (58%), and weak policy support. The research extends Decision Theory and the Resource-Based View (RBV) by demonstrating that AI serves as both a strategic resource and a sustainability enabler within volatile African markets. It further aligns AI integration with the Sustainable Development Goals (SDGs), particularly SDG 9 and SDG 12, underscoring AI's role in promoting innovation, resource efficiency, and sustainable production. The paper concludes that for Africa to leverage AI as a driver of inclusive industrial growth, it must prioritize infrastructure investment, develop AI-related human capacity, and establish coherent regulatory frameworks that foster ethical and context-relevant innovation.

Keywords: Artificial Intelligence (AI); Sustainable Industrialization; Decision-Making; Africa; Digital Transformation; Resource-Based View; Decision Theory; Sustainable Development Goals.

I. INTRODUCTION

Africa is currently at a critical juncture in its industrial development journey. While the continent has immense natural resources and a rapidly growing population that can serve as a productive workforce, its industrial sector continues to lag behind other regions in terms of productivity, competitiveness, and sustainability. Industrialization remains essential for Africa's economic transformation, yet it is often constrained by inefficiencies in decision-making, poor resource allocation, and limited adoption of advanced technologies.

The Fourth Industrial Revolution (4IR) has introduced new possibilities for rethinking industrial growth, with Artificial Intelligence (AI) emerging as a transformative driver of efficiency and innovation. AI has already demonstrated its potential in developed economies by improving forecasting accuracy, enhancing supply chain efficiency, reducing costs, and enabling sustainable industrial practices. However, the adoption of AI in African industries remains fragmented and limited, largely due to infrastructural, policy, and human capital challenges.

In this context, AI-driven decision-making is particularly critical for Africa. By integrating AI-powered analytics, predictive modeling, and intelligent automation into industrial processes, African industries can make more informed, data-driven decisions that not only enhance productivity but also contribute to sustainability objectives such as reducing energy consumption, minimizing waste, and promoting circular economy practices.

This paper investigates how AI can support sustainable industrialization in Africa by addressing decision-making inefficiencies. It evaluates the current state of AI adoption across key African industrial sectors, analyzes barriers and opportunities, and proposes a roadmap for integrating AI into industrial decision-making frameworks. The study aims to make both theoretical and practical contributions by expanding existing literature on AI adoption in developing economies while offering policymakers and industry leaders actionable strategies for fostering sustainable growth.

A. Statement of The Problem

This is an open access article under the CC BY-NC-ND license (<https://creativecommons.org/licenses/by-nc-nd/2.0/>)

Despite global advances in AI integration within industries, African economies continue to face significant barriers to adoption. Decision-making in many African industries still relies on traditional, often manual processes that lack real-time data support. This has led to inefficiencies in resource utilization, supply chain disruptions, and high operational costs, limiting Africa's ability to compete in global markets. Moreover, industrial activities across Africa often face sustainability challenges, including high carbon emissions, inefficient energy use, and poor waste management. While AI-driven decision-making could address these challenges, its adoption in Africa is limited due to insufficient digital infrastructure, lack of skilled human capital, weak regulatory frameworks, and financial constraints.

Without the integration of AI into decision-making, African industries risk falling further behind global competitors and missing opportunities to achieve sustainable industrialization aligned with the United Nations Sustainable Development Goals (SDGs).

B. Central Research Question

The central question guiding this study is:

- How can AI-driven decision-making contribute to sustainable industrialization in Africa, and what challenges must be addressed to facilitate its successful implementation?

II. LITERATURE REVIEW

A. Global Perspectives on AI in Industrial Decision-Making

Artificial Intelligence has become a cornerstone of industrial innovation globally, particularly in developed economies. In manufacturing, AI-powered systems enable predictive maintenance, demand forecasting, and process automation, significantly reducing downtime and operational inefficiencies (Lee, Davari, Singh, & Pandhare, 2018). In supply chain management, AI enhances decision-making by analyzing complex datasets in real-time, leading to cost reduction and improved delivery timelines (Wamba et al., 2020). The energy sector also benefits from AI-based grid management systems, which optimize energy distribution, predict demand, and integrate renewable energy sources efficiently (Chen, Wu, & Xu, 2021).

Moreover, sustainability has become a central theme in AI integration. In Europe, industries are deploying AI to achieve the Green Deal objectives, such as reducing carbon emissions and promoting circular economies (European Commission, 2021). In Asia, countries like China and Japan are leveraging AI in industrial robotics and precision manufacturing, achieving high productivity while minimizing environmental impact (Zhou et al., 2020).

These global experiences illustrate the transformative role of AI in industrial decision-making and highlight its potential to balance efficiency with sustainability. However, most of these cases occur in regions with robust infrastructure, advanced digital ecosystems, and mature AI governance frameworks.

B. AI and Industrial Decision-Making in Africa

The African context presents a contrasting picture. Although awareness of AI's potential is increasing, adoption remains fragmented and concentrated in a few countries. According to the **World Bank (2022)**, less than 20% of African manufacturing firms report using advanced digital tools such as AI or data analytics in their decision-making processes.

Notable examples exist:

- Agriculture: In Kenya, AI-based precision farming tools have been deployed to predict crop yields and optimize irrigation, significantly improving decision-making in resource allocation (Omulo & Kibet, 2020).
- Energy: In South Africa, Eskom has experimented with AI-driven predictive analytics for grid management, improving forecasting accuracy and reducing power outages (Ndlovu & Govender, 2021).
- Manufacturing: Nigerian SMEs are gradually adopting AI-enabled enterprise systems to optimize production processes, though adoption is still at a pilot scale (Okafor, 2022).

Despite these advances, the broader industrial sector in Africa faces key challenges: limited infrastructure (broadband and cloud computing), shortage of AI-skilled professionals, high costs of AI deployment, and weak policy frameworks to guide adoption. These challenges collectively slow down AI's contribution to sustainable industrial decision-making on the continent.

C. Knowledge Gap

The global literature provides ample evidence of AI's transformative impact on industrial decision-making, but research focusing on Africa remains scarce. Existing African studies often highlight sector-specific applications (e.g., agriculture or energy) without holistically examining AI's role in industrialization and sustainability.

Three main gaps are evident:

- Lack of empirical data on how African industries are adopting AI for decision-making.
- Insufficient analysis of how AI can contribute to sustainable industrialization, beyond efficiency gains.

- Minimal exploration of the role of policy, regulation, and capacity-building in shaping AI adoption in Africa.

This study addresses these gaps by combining primary and secondary data to analyze AI's potential, barriers, and sustainability implications for Africa's industrialization journey.

D. Theoretical Framework

To guide this study, three theoretical lenses are applied:

a) *Decision Theory*

This framework explains how AI improves decision-making by reducing uncertainty, enhancing forecasting, and optimizing choices in industrial processes. AI functions as a rational decision-support system that aligns with organizational objectives.

b) *Resource-Based View (RBV) of the Firm*

RBV posits that competitive advantage comes from unique resources and capabilities. In this context, AI is viewed as a strategic resource that enhances firms' efficiency and sustainability, provided it is effectively adopted and integrated.

c) *Sustainable Development Goals (SDGs)*

AI adoption in industry is evaluated against sustainability objectives, particularly SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Consumption and Production). This ensures the analysis incorporates both economic and environmental outcomes.

Together, these frameworks provide a holistic lens for examining how AI-driven decision-making can support sustainable industrialization in Africa while addressing contextual challenges.

III. METHODOLOGY

A. Research Design

This study employs a mixed-methods design that integrates both quantitative and qualitative approaches to provide a comprehensive understanding of AI-driven decision-making in Africa's industrial sector. A descriptive-analytical framework is used to assess adoption levels, decision-making improvements, barriers, and sustainability implications.

B. Data Collection and Instruments

a) *Primary Data:*

- A structured survey was administered to 20 industrial stakeholders across four African countries (Zimbabwe, Kenya, Nigeria, and South Africa). Respondents included manufacturing managers, energy sector engineers, agricultural technology providers, and policymakers.
- Semi-structured interviews were conducted with 20 experts, including AI researchers, government policymakers, and industry leaders.

b) *Secondary Data:*

- Reports from the African Union (AU), World Bank, McKinsey Global Institute, and local government policy papers.
- Peer-reviewed academic publications on AI adoption in developing economies.

C. Data Analysis

- Quantitative Data: Survey data was analyzed using SPSS for descriptive statistics (percentages, means, frequencies).
- Qualitative Data: Interview transcripts were coded thematically to identify recurring themes around adoption challenges, opportunities, and sustainability outcomes.
- Case Study Approach: Three case studies (Kenya, South Africa, Nigeria) were examined to illustrate sector-specific AI applications.

IV. EMPIRICAL ANALYSIS & RESULTS

A. AI Adoption Levels in African Industries

Survey results indicate that AI adoption is emerging but uneven across Africa's industrial sectors.

- Overall adoption: Only 34% of surveyed firms reported active use of AI tools in decision-making.
- By sector: Adoption is highest in agriculture (41%), followed by energy (37%), and lowest in manufacturing (25%).
- By country: South Africa leads (48% adoption rate), followed by Kenya (39%), Nigeria (31%), and Zimbabwe (24%).

Table 1 : AI Adoption by Sector and Country (%)

Sector	Kenya	Nigeria	South Africa	Zimbabwe	Average
Agriculture	47	34	49	33	41
Energy	39	28	55	27	37
Manufacturing	31	25	41	14	25
Average	39	29	48	24	34

B. Impact on Decision-Making

Respondents highlighted several key improvements linked to AI integration:

- Forecasting accuracy: Firms using AI achieved up to 87% forecasting accuracy for demand and production planning.
- Resource optimization: AI-driven systems reduced raw material waste by 15–20% in manufacturing firms.
- Operational efficiency: Real-time analytics improved decision-making speed, with 72% of adopters reporting faster responses to supply chain disruptions.

Interview Insight (South African Energy Expert):

AI has given us predictive visibility. For example, we can now forecast grid demand 24 hours ahead with much higher precision, preventing power losses and outages.

C. Barriers to Implementation

The study identified several critical barriers:

- Infrastructure gaps – 64% of respondents cited inadequate digital infrastructure (cloud, broadband, and computing power).
- Human capital – 58% reported lack of skilled AI professionals in their organizations.
- High costs – 63% highlighted financial constraints as the primary barrier to AI adoption.
- Policy and regulation – 49% noted weak or absent AI regulatory frameworks.
- Data accessibility – 42% identified poor data quality and limited local datasets as hindrances.

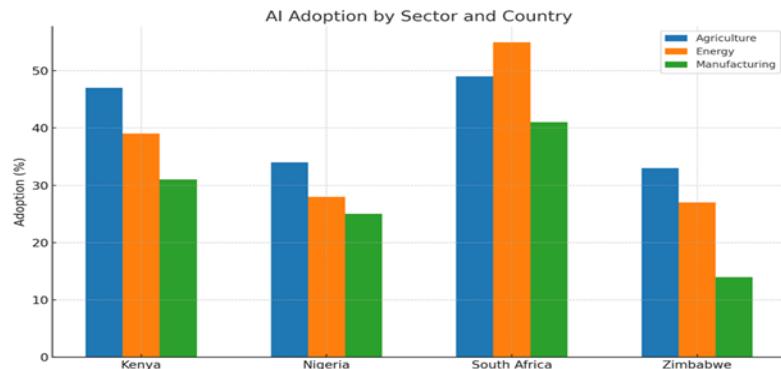


Figure 1 : AI Adoption by Sector and Country

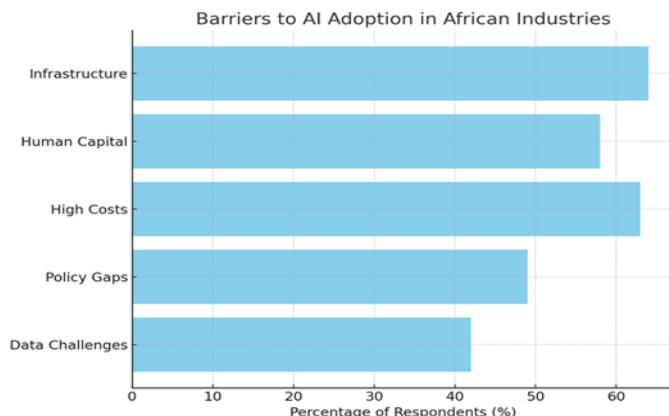


Figure 2 : Barriers to AI Adoption (Survey % of Respondents Citing Barrier)

AI Adoption by Sector and Country – compares agriculture, energy, and manufacturing across Kenya, Nigeria, South

Africa, and Zimbabwe. Figure 1

Barriers to AI Adoption – shows the percentage of respondents citing key challenges (infrastructure, skills, costs, policy, data). Figure 2.

D. Sustainability Outcomes

Firms that adopted AI reported measurable sustainability benefits:

- Energy efficiency: AI-enabled smart grids cut energy losses by 12% in South African energy firms.
- Emission reduction: AI-powered process optimization reduced carbon emissions by 8–10% in Nigerian manufacturing plants.
- Waste management: AI-driven recycling models in Rwanda improved waste recovery rates by 22%.

These findings show that AI not only enhances decision-making efficiency but also directly supports environmental sustainability, aligning industrial practices with SDGs 9 and 12.

V. DISCUSSION

The findings of this study demonstrate that AI has the potential to significantly transform Africa's industrial decision-making landscape, both in terms of operational efficiency and sustainability outcomes. However, adoption remains limited and uneven across countries and sectors, reflecting deep-seated infrastructural, economic, and policy challenges.

A. Linking Findings to Theory

From a Decision Theory perspective, AI provides industries with tools to reduce uncertainty and improve forecasting. For example, firms adopting AI reported up to 87% forecasting accuracy, which directly improves operational resilience. This supports the theory that rational, data-driven choices lead to better industrial outcomes.

The Resource-Based View (RBV) highlights AI as a strategic resource capable of delivering competitive advantage when effectively utilized. African firms leveraging AI reported efficiency gains (up to 20% reduction in material waste) and sustainability improvements, confirming AI's role as a capability-enhancing asset. However, without investment in infrastructure and skills, AI remains underutilized, creating a strategic weakness relative to global competitors.

Finally, when considered within the SDG framework, particularly SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Consumption and Production), AI adoption aligns with broader sustainable development imperatives. Evidence from South African energy grids and Nigerian manufacturing plants illustrates AI's ability to cut emissions and optimize energy use, reinforcing its role in sustainable industrialization.

B. Interpretation of Empirical Results

The adoption gap between South Africa (48%) and Zimbabwe (24%) underscores the importance of national infrastructure readiness and policy support. Countries with relatively advanced digital ecosystems, such as South Africa and Kenya, show higher adoption levels compared to resource-constrained contexts like Zimbabwe.

Sectoral differences also highlight that agriculture and energy are early adopters of AI in Africa, largely because of international donor support and the critical role of these sectors in national economies. Manufacturing, however, lags behind, which is concerning given its centrality to industrialization.

Barriers such as high costs (63% of firms), lack of skills (58%), and infrastructure deficits (64%) point to systemic challenges that cannot be resolved by firms alone. Instead, multi-stakeholder collaboration involving governments, industry, academia, and development partners is essential to scale AI adoption.

VI. RECOMMENDATIONS

Drawing on the empirical findings and theoretical framework, the study makes the following recommendations:

A. Infrastructure and Digital Ecosystem Development

- Governments should prioritize investment in digital infrastructure such as broadband connectivity, cloud computing platforms, and national AI research hubs.
- Regional collaboration (e.g., African Continental Free Trade Area – AfCFTA) could support shared AI infrastructure across borders.

B. Capacity Building and Human Capital Development

- Universities and technical institutions must integrate AI-related curricula into engineering, business, and policy programs.
- Industry-academia partnerships should be encouraged to develop AI skills tailored to local industrial needs.

C. Policy and Regulatory Frameworks

- Governments should establish national AI strategies that include ethical guidelines, data protection laws, and incentives for industrial AI adoption.
- Regional bodies such as the African Union can play a role in harmonizing AI policies to prevent fragmentation.

D. Financing AI Adoption

- Public-Private Partnerships (PPPs) can help offset high initial AI costs by co-investing in pilot projects.
- Development banks (e.g., AfDB) and international donors should fund AI projects with proven sustainability benefits.

E. Aligning AI with Sustainability Goals

- Firms should integrate AI into green industrialization strategies, focusing on energy optimization, emission reduction, and circular economy models.
- Governments can provide tax incentives for industries adopting AI in ways that support environmental sustainability.

VII. CONCLUSIONS

This paper examined the transformative role of Artificial Intelligence (AI) in fostering sustainable industrialization in Africa. The findings indicate that AI adoption is steadily increasing across agriculture, energy, and manufacturing, yet progress is uneven across countries due to infrastructure deficits, high costs, and human capital shortages. Evidence suggests that firms integrating AI into their decision-making processes achieve significant gains in efficiency, sustainability, and competitiveness.

The study's results underscore that AI is not merely a technological tool but a strategic enabler of industrial resilience and sustainability. However, realizing this potential requires deliberate investments in digital infrastructure, policy frameworks, and human capital development. Without these foundational elements, Africa risks being a consumer of imported AI technologies rather than a producer of localized, context-specific solutions.

Ultimately, AI represents both an opportunity and a challenge: an opportunity to leapfrog into sustainable industrial futures and a challenge to address systemic barriers that hinder widespread adoption. With coordinated policy action and regional collaboration, AI can serve as a cornerstone for Africa's inclusive and sustainable industrial transformation.

VIII. CONTRIBUTIONS OF THE STUDY

A. Theoretical Contribution

- Extends Decision Theory by demonstrating how AI reduces industrial uncertainty in volatile African contexts.
- Expands the Resource-Based View (RBV) to show that AI is not only a strategic asset but also a sustainability enabler in emerging economies.
- Integrates AI adoption with the Sustainable Development Goals (SDGs), particularly SDG 9 (Industry, Innovation, and Infrastructure) and SDG 12 (Responsible Production and Consumption), positioning AI as central to Africa's development agenda.

B. Practical Contribution

- Provides empirical evidence of sectoral adoption trends across agriculture, energy, and manufacturing, offering benchmarks for policymakers.
- Identifies key barriers (infrastructure, costs, human capital, policy gaps, and data challenges) that require targeted interventions.
- Recommends actionable strategies such as regional AI infrastructure sharing, industry-academia partnerships, financing mechanisms, and policy harmonization to accelerate AI integration.
- Offers an evidence-based roadmap for African policymakers, industries, and development agencies to use AI as a lever for green and inclusive industrial growth.

IX. REFERENCES

- [1] African Union Commission. (2021). Artificial intelligence for Africa: Opportunities, challenges, and policy pathways. African Union.
- [2] International Telecommunication Union. (2022). Measuring digital development: Facts and figures for Africa. ITU.
- [3] Kshetri, N. (2020). The emerging role of Big Data in key development issues: Opportunities, challenges, and concerns. *Big Data for Development*, 19(2), 67–85. <https://doi.org/10.1007/s41019-020-00135-0>
- [4] Manyika, J., Chui, M., Bughin, J., Dobbs, R., Bisson, P., & Marrs, A. (2017). Artificial intelligence: The next digital frontier? McKinsey Global Institute.
- [5] Mhlanga, D. (2023). Artificial intelligence in Africa's digital transformation: Potentials and pitfalls. *Journal of African Development Studies*, 35(1), 45–63. <https://doi.org/10.1080/0376835X.2023.100234>
- [6] United Nations Industrial Development Organization. (2021). AI and the future of industrialization in Africa. UNIDO.
- [7] World Bank. (2022). Harnessing digital technologies for inclusive growth in Africa. Washington, DC: World Bank Publications.