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Abstract: Artificial intelligence (AI) is reshaping manufacturing through quality control, maintenance, and supply chain 
planning, yet adoption in Sub Saharan Africa is uneven. The researchers synthesize evidence on AI adoption with a focus 

on Zimbabwe, guided by Technology Organization Environment (TOE), the Technology Acceptance Model and Unified 
Theory of Acceptance and Use of Technology (TAM/UTAUT), the Resource Based View (RBV), and Dynamic Capabilities. 
The researcher applies a transparent selection process and includes n = 26 studies: Zimbabwe (n = 2), South Africa (n 
= 2), Africa/regional (n = 0), and global/other (n = 22). Zimbabwe specific evidence is thin and concentrated in SMEs 
and a food manufacturing case. The review provides a consolidated synthesis of drivers and barriers, clarifies the 
methodology, and presents a practical research agenda tailored to Zimbabwe. The paper offers a compact framework 
linking organizational and ecosystem conditions to use cases and outcomes, and a roadmap for firm actions, policy 
levers, and measurement priorities to scale AI adoption. 
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I. INTRODUCTION 
Zimbabwe’s manufacturing sector remains central to jobs and export diversification. However, aging equipment, fragile 

infrastructure, and costly finance continue to constrain competitiveness, especially for SMEs (Sibanda et al., 2024). AI supports 
predictive maintenance, process optimization, and quality assurance, which can raise throughput and reduce waste 
(Brynjolfsson et al., 2021). Value often arrives after firms invest in skills, data, and redesigned processes, not at the pilot stage. 
Global experience shows gains from sensor enabled inspection, computer vision for defects, and AI enhanced planning. These 
gains require coordinated data governance, cybersecurity, and change management. In Southern Africa, studies report similar 
inhibitors across countries but also demonstrate feasible use cases when leadership aligns technology, processes, and people 
(Maisiri et al., 2021; Nzama et al., 2024). Zimbabwe specific evidence is limited. Early cases suggest performance benefits in 
quality and maintenance but highlight skills, integration, and funding gaps (Munongo and Pooe, 2022; Sibanda et al., 2024). 
This review consolidates what is known, quantifies the local evidence base, and proposes a research agenda that reflects 
Zimbabwe’s industrial realities. See Section 5.2 for the consolidated synthesis of drivers and barriers. 

II. LITERATURE REVIEW 

The scope of AI in manufacturing spans machine learning, computer vision, optimization, and reinforcement learning. 
These tools use data from sensors, machines, enterprise systems, and external sources for tasks such as predictive 
maintenance, anomaly detection, and quality inspection (Lu, 2020; Bousdekis et al., 2020). Adoption outcomes vary due to 
managerial priorities, data quality, workforce skills, infrastructure reliability, and governance (Wamba Taguimdje et al., 2020; 
Mikalef et al., 2020). 

A. Global Perspectives on AI Adoption in Manufacturing 
Internationally, AI adoption advances alongside broader digital programs that build connectivity, data pipelines, and 

analytics (Bousdekis et al., 2020; Cimini et al., 2020). Firms often see delayed benefits as they accumulate data, redesign 
processes, and develop human capital, which creates a slow then fast path to productivity (Brynjolfsson et al., 2021). AI 
reshapes, rather than replaces, many roles. New tasks emerge in supervision, maintenance, and data engineering (Acemoglu 
and Restrepo, 2020). 

The COVID 19 period accelerated digital tools for resilience. AI enhanced planning supported scenario analysis and 
supply network redesign (Ivanov and Dolgui, 2020; Ivanov, 2021). AI also complements lean and human in the loop practices 
that keep people central to decision making (Cimini et al., 2020; Tortorella et al., 2021). Key enablers include data foundations, 
cross functional collaboration, and governance. Constraints include legacy systems, cybersecurity risk, skills shortages, and 
financing hurdles, especially for SMEs (Hsu et al., 2021; Sila, 2020). Cloud based solutions lower entry barriers for some use 
cases (Khan et al., 2022). 
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B. African Experiences in AI and Industry 4.0 in Manufacturing 
African research shows early stage pilots and incremental improvements. Inhibitors include limited digital skills, legacy 

machinery, and high equipment costs. Connectivity and infrastructure reliability also matter (Maisiri et al., 2021; Nzama et al., 
2024; see Section 5.2 for consolidated synthesis). Export facing firms tend to adopt AI faster due to customer requirements. 
During COVID 19, pre-existing digital capabilities supported resilience, though gains were uneven (Queiroz et al., 2020). Policy 
strategies highlight digital economy development, but implementation gaps remain in broadband, data protection, and SME 

support (OECD, 2020; Stix, 2021). 

C. Zimbabwean Case Evidence and Emerging Patterns 
Zimbabwe specific studies are few but instructive. SMEs reported low adoption of Fourth Industrial Revolution tools 

during COVID 19, citing costs, skills gaps, and limited awareness. Managerial innovativeness and ICT literacy drove uptake 
(Munongo and Pooe, 2022). A food manufacturing case showed AI and IoT improved defect detection and process stability, 
but data integration and training limited scale (Sibanda et al., 2024; see Section 5.2 for consolidated synthesis). South African 
findings offer a relevant benchmark for managerial support, skills, and financing needs (Maisiri et al., 2021; Nzama et al., 
2024). 

III. THEORETICAL AND CONCEPTUAL FRAMEWORK 
The analysis integrates adoption and strategy perspectives to explain AI uptake in Zimbabwean manufacturing. The 

Technology Organization Environment perspective frames adoption through technological readiness, organizational capacity, 

and environmental pressures, which aligns with evidence on how legacy systems, skills, and regulation shape digital uptake 
(Sila, 2020; Maisiri et al., 2021). At the user and workflow level, the Technology Acceptance Model and the Unified Theory of 
Acceptance and Use of Technology emphasize perceived usefulness, ease of use, social influence, and facilitating conditions, 
and recent work adds trust and explain ability for AI in quality and maintenance decisions (Dwivedi et al., 2021; Raisch and 
Krakowski, 2021). From a strategic standpoint, the Resource Based View links performance to distinctive capabilities such as 
curated data, analytics talent, and disciplined processes that translate AI into cost, quality, and flexibility gains (Mikalef et al., 
2021; Wamba Taguimdje et al., 2020). Dynamic Capabilities highlight sensing opportunities, seizing them through investment 
and orchestration, and transforming routines to embed AI under uncertainty, a logic that suits volatile contexts such as 
Zimbabwean manufacturing (Teece, 2020; Dwivedi et al., 2021). 

 
Figure 1 : Integrated Framework (TOE, TAM/UTAUT, RBV, Dynamic Capabilities):  

Drivers/Barriers → AI Adoption → Operational Outcomes. 

Data and model governance cut across these lenses. Governance practices address data quality, cybersecurity for 
connected equipment, and model documentation and monitoring, which support trust and safe scaling in industrial settings 

with infrastructural fragility and skills limits (Hsu et al., 2021; Stix, 2021). Servitization extends the role of AI by enabling 
advanced services that fuse products and data driven offerings (Sjödin et al., 2020). Figure 1 presents the integrated framework 
from antecedents to outcomes. 

A. Empirical Evidence from Zimbabwe and Southern Africa 
Zimbabwean SMEs reported low 4IR adoption during COVID 19 due to cost and skills gaps. Manager innovativeness 

and ICT literacy supported adoption (Munongo and Pooe, 2022). A Zimbabwean food manufacturer used AI and IoT for quality 
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control, improving detection and visibility but faced integration and training constraints (Sibanda et al., 2024). In South Africa, 
inhibitors include digital skills shortages and capital constraints. Export oriented sectors adopt faster due to customer pressure 
(Maisiri et al., 2021; Nzama et al., 2024). These patterns align with the integrated framework and underscore the need for 
staged capability building. 

B. Research Gaps and Agenda 
The review identifies five gaps for Zimbabwe. First, longitudinal plant level evidence to trace adoption sequences and 

outcomes is scarce (Brynjolfsson et al., 2021). Second, workforce transitions, including reskilling and job redesign, remain 
under examined (Acemoglu and Restrepo, 2020; Cimini et al., 2020). Furthermore, data governance and cybersecurity in 
industrial AI have received limited attention (Hsu et al., 2021; Stix, 2021). Moreover, the economics of AI adoption for SMEs, 
including total cost of ownership and payback, are poorly understood (Hottenrott and Peters, 2020). Also, policy and industry 
linkages that shape adoption require stronger theorization and evidence (OECD, 2020; Maisiri et al., 2021). The researcher 
proposes a mixed methods agenda that combines multi wave surveys with process tracing case studies across sectors such as 
food, wood products, metals, and textiles (Mikalef et al., 2021; Teece, 2020). Program evaluations can assess incentives and 
shared training platforms. Governance research should scope feasible data stewardship and cybersecurity models for local 
firms. 

C. Research Agenda for Zimbabwean Manufacturing 
Table 1 presents a concise agenda aligned to the identified gaps. 

Table 1 : Research Agenda for Zimbabwean Manufacturing 

Gap Research Questions Suggested Methods Candidate Data Sources Expected 
Contribution 

 
Longitudinal 
trajectories 

How do AI capabilities 
accumulate? 

Panel surveys; Plant logs; ERP/MES; Sequenced 
adoption paths; 

What sequences yield returns? repeated case study interview protocols timing of payoffs 

 
 
 
 

Workforce 
transitions 

What skills are needed at line/ Task analysis; HR/training records; 
union 

Reskilling models; 
job 

maintenance/quality roles? skill mapping; agreements; operator 

surveys 

redesign templates 

 
quasi-experiments 

  

 
 

Governance & 
security 

What minimum viable 
governance 

Maturity assessment Data policies; cyber 
incident 

Context-
appropriate 

practices enable trust at SMEs? + design science logs; vendor SLAs governance toolkit 

 

Adoption 
economics 

(SMEs) 

What is TCO and payback 

under 

Cost benefit models Financial statements; 

project 

Investment cases; 

volatility and high borrowing? + matched samples charters; lender terms financing guidance 

 
Policy–industry 

linkages 

Which incentives and shared 
services accelerate adoption? 

Program evaluation; 
difference in 

differences 

Tax incentives; training 
vouchers; park-level 

services 

Evidence on 
effective policy 

levers 

 

IV. RESEARCH METHODOLOGY 
The researchers conducted a critical review of AI adoption in manufacturing from 2020 to 2025, emphasizing 

Zimbabwe and Southern Africa while situating findings in global literature (Sila, 2020; Dwivedi et al., 2021). The researcher 
searched Scopus, Web of Science, IEEE Xplore, and leading publisher platforms using key search word combinations of artificial 
intelligence, manufacturing, quality control, predictive maintenance, digital transformation, adoption, Africa, Zimbabwe, and 
Southern Africa. The researcher also applied citation chaining from initial hits. 

Inclusion criteria admitted empirical studies and rigorous conceptual analyses that addressed AI or advanced analytics 
in manufacturing or supply chains, with relevance to adoption determinants, outcomes, workforce transitions, governance, or 
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strategy. Non-industrial domains were excluded unless clearly transferable. Given few Zimbabwe specific publications, the 
researcher included regional comparators and global studies with relevant mechanisms. The researcher appraised clarity of 
design, methods transparency, and credibility of evidence, recognizing exploratory designs in early stage contexts (Maisiri et 
al., 2021; Munongo and Pooe, 2022). 

PRISMA style flow in prose was as follows. After screening and eligibility checks against the criteria, n = 26 studies 
were included: Zimbabwe (n = 2), South Africa (n = 2), Africa/regional (n = 0), and global/other (n = 22). Counts derive from 

the final references list. 

Grey literature that included Government and industry reports likely contain relevant statistics on digital 
infrastructure, skills, and manufacturing upgrades were noted. The researchers did not include these but recommends 
incorporating them in future updates, for example national digital economy strategies and manufacturing association surveys. 

Table 2 : Summary of Reviewed Studies 

Author(s) 
& Year 

Country/Regi
on 

Sector/Conte
xt 

Method/Ty
pe 

AI Use 
Case/Theme 

Key Finding(s) Relevance 
to 

Zimbabwe 

Acemoglu 
& 

Restrepo 
2020 

Global/US Labor/indust
ry 

Empirical Automation & 
jobs 

Task shifts; new roles 
emerge 

Workforce 
planning 

Bousdekis 
et al. 2020 

Global Manufacturi
ng 

Review PHM/predictive 
maint. 

PHM improves uptime; 
data key 

Maintenanc
e roadmap 

Brynjolfss
on et al. 

2021 

Global Economy-
wide 

Conceptual Productivity 
dynamics 

Delayed gains after 
complements 

Staged 
expectation

s 

Cimini et 
al. 2020 

Global Manufacturi
ng 

Conceptual Human-in-the-
loop 

Augmentation improves 
control 

Operator-
centric use 

Dwivedi et 
al. 2021 

Global Decision-
making 

Review AI adoption & 
governance 

Challenges; agenda for 
practice 

Adoption 
lens 

Hottenrott 
& Peters 

2020 

Global/EU Innovation Empirical Finance 
constraints 

Finance affects 
innovation/jobs 

SME 
finance 
insights 

Hsu et al. 
2021 

Global Manufacturi
ng 

Review Cybersecurity 
(OT/IT) 

ICS risks; layered controls Security 
baseline 

Ivanov 
2021 

Global Supply 
chains 

Conceptual Lean–
resilience–

sustain. 

Synergies/trade-offs in 
design 

Plan for 
resilience 

Ivanov & 
Dolgui 
2020 

Global Supply 
networks 

Conceptual Viability/resilie
nce 

Visibility supports 
survivability 

Scenario 
planning 

Khan et al. 
2022 

Global Manufacturi
ng 

Review Cloud 
manufacturing 

Cloud lowers barriers; 
new risks 

Cloud 
options 

Lu 2020 Global Industry 4.0 Review Technologies & 
issues 

Integration challenges 
persist 

Tech 
mapping 

Maisiri et 
al. 2021 

South Africa Manufacturi
ng 

Empirical I4.0 inhibitors Skills, legacy, capital 
barriers 

Regional 
benchmark 
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Mikalef et 
al. 2020 

Global Firms Empirical Big data 
capabilities 

Capabilities mediate 
performance 

Capability 
focus 

Mikalef et 
al. 2021 

Global Firms Empirical AI capabilities Positive link to 
performance 

Investment 
logic 

Munongo 
& Pooe 
2022 

Zimbabwe SMEs/SCM Empirical 4IR adoption & 
resilience 

Low uptake; 
innovativeness helps 

Zimbabwe 
evidence 

Nzama et 
al. 2024 

South Africa Manufacturi
ng 

Empirical AI influence Benefits with workforce 
impacts 

Labor 
transition 

OECD 
2020 

Global Policy Report Digital economy Infrastructure & skills 
gaps 

Policy 
context 

Queiroz et 
al. 2020 

Global Supply 
chains 

Review Epidemic 
disruptions 

Digital tools aid resilience Risk 
manageme

nt 

Raisch & 

Krakowski 
2021 

Global Management Conceptual Automation–

augmentation 

Balance automation & 

augmentation 

Change 

leadership 

Shah & 
Ghosh 
2021 

Global Supply 
chains 

Review Quality 4.0 Digital quality capabilities Quality 
integration 

Sibanda et 

al. 2024 

Zimbabwe Food mfg. Empirical AI/IoT quality 

control 

Better detection; scaling 

issues 

Zimbabwe 

case 

Sila 2020 Global Adoption Review Adoption 

models 

TOE evidence and design 

choices 

Method & 

lens 

Sjödin et 
al. 2020 

Global Manufacturi
ng 

Empirical AI for 
servitization 

Capabilities for services Revenue 
models 

Stix 2021 Global Policy Conceptual AI policy 
principles 

Pragmatic, actionable 
guidance 

Governance 
cues 

Teece 
2020 

Global Strategy Conceptual Capability 
theory 

Sensing/seizing/transfor
ming 

Orchestrati
on 

Wamba 
Taguimdje 
et al. 2020 

Global Firms Empirical AI business 
value 

AI projects can drive 
performance 

Business 
case 

 

V. RESULTS AND DISCUSSIONS 
A. State of AI Adoption in Zimbabwean Manufacturing  

Evidence indicates an early and uneven adoption profile. Implementations are mostly pilots or focused use cases in 
quality control and process monitoring (Sibanda et al., 2024). Reported gains include fewer defects and better visibility into 
process variation. Many firms remain at the awareness stage due to unreliable power and connectivity, legacy machinery 
without digital interfaces, and limited in house data skills (Munongo and Pooe, 2022). South African studies show similar 
barriers, though export-oriented sectors adopt faster under customer pressure (Maisiri et al., 2021; Nzama et al., 2024). For 
Zimbabwe’s SME heavy base, targeted applications with clear metrics offer feasible entry points. Shared platforms, vendor 
partnerships, and collaborative training can reduce costs and risks.  

B. Drivers and Barriers of AI Adoption  
Technological factors shape feasibility and scale. Sensor retrofits, cloud and edge options, and modular architectures 
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can lower initial costs and allow incremental deployment, but legacy equipment and weak data quality raise integration 
complexity and undermine model performance (Khan et al., 2022; Lu, 2020; Bousdekis et al., 2020; Sila, 2020). Organizational 
conditions determine the pace of implementation. Clear managerial sponsorship, cross functional teams, and lean process 
discipline enable adoption, while shortages in data engineering and AI skills, coupled with weak change management, slow 
progress and increase dependence on vendors (Cimini et al., 2020; Teece, 2020; Maisiri et al., 2021; Mikalef et al., 2021). 
Environmental pressures act as both catalysts and constraints. Customer requirements, export standards, and competitive 

intensity can trigger upgrades, yet unreliable power and connectivity and a high cost of capital limit investment appetite and 
elongate payback periods (Nzama et al., 2024; OECD, 2020; Hsu et al., 2021; Hottenrott and Peters, 2020). Governance 
considerations cut across all stages. Proportionate data and model governance and industrial cybersecurity practices build 
trust and permit scale, whereas unclear data ownership, lack of explainability, and inadequate controls for industrial control 
systems deter use of AI in quality and maintenance decisions (Stix, 2021; Hsu et al., 2021; Dwivedi et al., 2021; Shah and Ghosh, 
2021). Workforce transitions are pivotal. Reskilling in maintenance, data handling, and quality analytics supports human 
augmentation, while skills gaps and anxiety about job loss undermine adoption in the absence of transparent change plans 
and engagement with frontline workers (Acemoglu and Restrepo, 2020; Cimini et al., 2020; Raisch and Krakowski, 2021; 
Maisiri et al., 2021). 

C. Performance Outcomes and the Role of Complementarities  
When firms embed AI in stable processes with reliable data and trained personnel, they report fewer defects, shorter 

cycle times, and better maintenance scheduling (Bousdekis et al., 2020; Cimini et al., 2020). Benefits rise as complementary 
assets such as skills, data, and process discipline accumulate (Brynjolfsson et al., 2021). AI that complements lean practice and 
human oversight sustains quality and safety (Tortorella et al., 2021). In supply chains, visibility and AI supported planning 
improve resilience to shocks (Ivanov and Dolgui, 2020; Queiroz et al., 2020). Firm level performance effects appear when AI 
capabilities integrate with operational routines (Mikalef et al., 2021; Wamba Taguimdje et al., 2020). 

D. Data Governance, Cybersecurity, and Ethical Considerations  
Manufacturing AI needs robust practices for data quality, lineage, access controls, and model lifecycle oversight. 

Explainability is critical where AI informs quality and maintenance decisions (Stix, 2021; Dwivedi et al., 2021). Converging IT 
and OT increases exposure to cyber threats, so firms should adopt industrial control system specific controls and network 
segmentation (Hsu et al., 2021). SMEs may rely on vendor managed services with clear service level agreements and minimum 
standards to reduce burden (OECD, 2020). Ethical practice centers on transparency, accountability, and human oversight in 

operational decisions (Stix, 2021). 

E. Workforce Transitions and Capability Development  
AI changes task mixes rather than eliminating entire roles. Demand grows for skills in equipment upkeep, data 

handling, and quality analysis, while routine inspection automates (Acemoglu and Restrepo, 2020; Cimini et al., 2020). South 
African evidence identifies digital skills as a top barrier, which implies heightened urgency for Zimbabwe (Maisiri et al., 2021; 
Nzama et al., 2024). Effective change management involves frontline workers early, explains goals, and demonstrates value. 
Public and private partnerships can scale modular upskilling aligned with sector needs (OECD, 2020). 

VI. IMPLICATIONS 
A. Implications for Zimbabwean Firms  

Firms can pursue pragmatic and staged adoption anchored in measurable use cases. The most feasible starting points 

are vision based quality inspection in critical processes, predictive maintenance on bottleneck equipment, and demand sensing 
for inventory optimization, as these applications offer clear metrics and a strong link to performance (Bousdekis et al., 2020; 
Sibanda et al., 2024). For each use case, firms should invest in reliable data capture and integration to ensure model inputs 
are stable and auditable. Demonstrating early gains can build credibility and internal support, which then eases expansion into 
adjacent processes as skills increase. Change leadership remains central. Managers should articulate clear objectives for AI in 
operations, allocate time and resources for training, and align incentives and performance measures to sustain use beyond the 
pilot stage, acknowledging the lag between investment and measured productivity gains that characterizes digital 
transformation (Brynjolfsson et al., 2021; Mikalef et al., 2021). Governance and security should be proportionate to the level 
of AI use. Basic data stewardship, documented model validation, and industrial cybersecurity controls for connected equipment 
and networks reduce risk and build trust in AI outputs, with vendor offerings and sector guidance used where in house capacity 
is limited (Hsu et al., 2021; Stix, 2021). Collaboration can lower costs and accelerate learning. Participation in associations, 

consortia, and vendor partnerships can provide access to shared training, reference architectures, and pooled solutions that 
reduce barriers for SMEs and diffuse successful patterns across firms facing similar constraints (OECD, 2020; Maisiri et al., 
2021). 
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B. Implications for Policymakers and Ecosystem Actors 
Policy design should address financing constraints directly and transparently. Accelerated depreciation, targeted tax 

credits for verified digital investments, and blended finance instruments suited to manufacturing modernization can lower the 
cost of capital for SMEs, with eligibility linked to productivity and employment outcomes to ensure accountability (Hottenrott 
and Peters, 2020; OECD, 2020). Infrastructure upgrades remain foundational. Reliable power and high quality connectivity in 
industrial zones, including digital industrial parks with shared cybersecurity support and data services, would raise feasibility 

and lower per firm costs. Skills development requires coordinated action across education and industry. Technical curricula 
should incorporate AI and analytics modules, while public and private partners deliver modular upskilling and apprenticeships 
aligned with sector roadmaps, supported by vouchers or matching grants to stimulate firm participation (Dwivedi et al., 2021; 
Nzama et al., 2024). Practical governance guidance should be co developed with industry bodies. Minimum data and model 
documentation practices, data quality standards, and baseline industrial control system cybersecurity controls, tailored to SME 
capacity, can raise the ecosystem baseline and reduce uncertainty (Stix, 2021; Hsu et al., 2021). 

C. Implications for Research and Measurement 
The thin local evidence base should be made explicit and addressed systematically. Multi case comparative studies 

across sectors and longitudinal plant level tracking can map trajectories, learning processes, and the accumulation of 
complementary assets that shape outcomes (Brynjolfsson et al., 2021; Mikalef et al., 2021). Surveys should be theory informed 
and include AI specific constructs such as data governance maturity, model explainability, and cybersecurity readiness to reflect 

the socio technical character of AI in operations (Dwivedi et al., 2021; Sila, 2020). Indicators for adoption intensity, capability 
maturity, and performance outcomes should be developed and maintained through collaboration among statistical agencies, 
industry, and academia (OECD, 2020). Table 2 lists priority questions and methods for Zimbabwe. 

VII. CONCLUSIONS AND RECOMMENDATIONS 
This paper delivers a tighter and transparent review of AI adoption in Zimbabwean manufacturing. It includes n = 26 

studies, with only two Zimbabwe specific sources and two South African comparators. The local evidence base is therefore thin 
and concentrated in SMEs and a single food manufacturing case, which is a clear research gap. The review consolidates drivers 
and barriers into a single synthesis in Section 5.2, presents an integrated framework in Figure 1, and sets out a targeted 
research agenda in Table 2. The roadmap for action is concise. Firms should select a small set of high value use cases, invest 
in data and skills tied to those use cases, institutionalize proportionate governance and security, and leverage collaborations 
to reduce costs. Policymakers should target the cost of adoption with finance instruments, build reliable industrial 

infrastructure, scale modular skills programs, and publish practical governance guidance for industrial AI. Measurement 
priorities include longitudinal plant level studies and sector wide indicators of adoption and capability maturity. By aligning 
firm strategies with enabling policies and shared infrastructure, Zimbabwe can move from pilots to scaled AI use that improves 
quality, uptime, cost, and resilience. The agenda and tools provided here aim to support that transition while respecting local 
constraints and opportunities. 
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