

"Investing in Africa's future"

COLLEGE OF HEALTH, AGRICULTURE AND NATURAL SCIENCES

NACP 217: GENETICS AND BIOTECHNOLOGY

END OF FIRST SEMESTER FINAL EXAMINATIONS

NOVEMBER 2021

LECTURER: MR. TABARIRA J.

DURATION: 5 HRS.

INSTRUCTIONS

Download the Question paper from the Moodle platform and work offline

Choose and Answer One question

DO NOT repeat material

Credit will be awarded for logical and systematic presentations

Question One

- a. Colour blindness in humans is caused by a recessive sex-linked gene. If a normal lady whose father was colour blind marries a colour blind man.
 - i. What are the possible genotypes of the mother of the colour blind man? [4]
 - ii. What are the chances that the first child from this marriage will be a colour blind boy?
 - iii. Of the girls produced by these parents, what percentage is expected to be colour blind?
 - iv. What proportion of children produced from these parents (sex unspecified) is expected to be normal? [4]
 - v. Outline the general characteristics of recessive sex-linked traits. [4]
- b. Write brief notes on the following:

i.	Contribution of translation and transcription processes to the well being of an			
	organism.	[10]		
ii.	Importance of meiosis.	[10]		
iii.	Sex limited traits.	[10]		

- iv. DNA replication. [10]
- v. Lethal genes. [10] c. As Biotechnology expert, explain the practical contribution of GMO technology in
- addressing food security challenges in Africa. [30]

Question Two

- a. In rabbits, fur colour is determined by a set of multiple alleles at one locus that have the following relationship:
 - C+ (agouti) is dominant to all other alleles.
 - C^h (himalayan) is dominant to C^a (albino).
 - C^u (chinchilla) shows incomplete dominance with regard to C^h and C^a

The genotypes C^uC^h and C^uC^a are light-grey phenotypes.

i.	What breeding stock would you select if you wished all of the offsprin	igs to be
	chinchilla?	[5]
ii.	Give the genotypes of rabbits whose offsprings included 4chinchilla, 8 light	-grey and
	4 himalayan.	[5]
iii.	If in one of the matings you obtained 4 grey bunnies, 2 albino bunnies, and 2 h	nimalayan
	bunnies. What were the genotypes of the parents?	[5]
iv.	In another mating, the litter contained 3 agouti bunnies and 3 light-grey bunn	ies. What
	were the genotypes of the parents of this litter?	[5]
v.	What were the genotypes of parents whose litter comprised of 8 agouti, 4	light-grey
	and 4 himalayan bunnies?	[5]

- b. Explain, giving relevant examples, the positive impacts of Biotechnology in the Agriculture industry. [40]
- c. The table below shows blood group types in a court case of disputed parentage.
 Determine the probable parent. Clearly show how you determined the parent in all cases.

	Blood Group Type								
Mother		Child			Father 1	F	Father 2		
i.	В	0			AB	A	[4]		
ii.	В	AB				А	В	[4]	
iii	AO	В				во	Α	[4]	
	Fraternal twins								
iv	0	Twin 1	А	Twin 2	В	В	Α	[4]	
v	AB	Twin 1	AB	Twin 2	В	В	А	[4]	

vi. Provide a conclusive advice to the court in this matter. If there is need for further tests to be carried out, suggest the nature or type of tests giving proper justification[15]

Question Three

a. In squash, fruit colour can be yellow, green or white. The B- and bb alleles produce yellow and green fruits respectively. In the presence of the dominant allele at the A locus the fruit colour becomes white in the presence of either B or b.
If a breeder crosses squash of genotypes AABb and AaBb, what are the phenotypic proportions of the offsprings from resultant cross? [15]

b.	Giving specific examples, explain in support of the notion that presence of a ge	ene does
	not guarantee its expression in an organism.	[30]
C.	Demonstrate your understanding of the importance and applications of genetic	ics in the
	field of Agriculture.	[25]
d.	Write explanatory notes on the following:	
	i. Recessive sex linked characters.	[5]
İ	ii. Importance of mitosis in agriculture.	[10]
i	ii. Effects of chromosomal mutation/changes in organisms.	[10]
i	v. Complimentary base pairing.	[5]

END OF EXAMINATION PAPER