APPLIED ECONOMETRICS FORMULAS

Simple Linear Regression

Let us define

2= =2y — n?
z oy

and
See =2 (x,— 2 = > x2 — n?
Then (3.8) can be written as

BS,., =S, or B= S (3.9)

Hence the least squares estimators for o and B are

g = %z and &=y — Bz (3.10)

The estimated residuals are

ﬁl‘:YI—d_Bxl

The residual sum of squares (to be denoted by RSS) is given by
RSS = 3 (- & - fx)
2 [y, - 9 - Bx, - P ‘
=X -N+PI - -8 0, - N - D
=8, + pis,, - 2BS,,
But § = §,/S,.. Hence we have

st i
RSS = §, - <% = §, - B,

S,, is usually denoted by TSS (total sum of squares) and BS,, is usually de-
noted by ESS (explained sum of squares). Thus

TSS = ESS + RSS

(total) (explained) (residual)



The coefficient of determination », is given by

. . ESS _TSS — RSS _ @5,

® “FSS TSS =
Summary
The estimates for the regression coefficients are

B = %‘2 and & =y — Bz
The residual sum of squares is given by

52
Rss=s,,—_—s,-'2=s,,—as,,=s,,(|—ri,)

and the coefficient of determination is given by
g o= S _ BS,
S.S,, S,,

The least squares estimators 8 and & yield an estimated straight line that has a
smaller RSS than any other straight line.

@& and § are jointly normally distributed with

E@) = « var(&)=oz(1+f-)
n S..
EB) =B var(B) = ;i

and
& —X
covia, B) = o? (-s—)

These results would be useful if the error variance o’ were known. Unfortu-
nately, in practice. o is not known, and has to be estimated.
If RSS is the residual sum of squares, then

RSS

g is an unbiased estimator for o?

& =

R
? has a x*-distribution with degrees of freedom (n — 2)




(& — a)/SE(&) and (B — B)/SE(B) each have a t-distribution with
d.f. (n = 2). These distributions can be used to get confidence in-
tervals for a and B and to test hypotheses about a and B.

& is usually called the standard error of the regression. It is denoted by SER
(sometimes by SEE).

W
Y

Table 3.3 Analysis of Variance for the Simple Regression Model

Source of Degrees of

Variation Sum of Squares Freedom Mean Square

x ESS = 5,, 1 ESS/1

Residual RSS = §,, — BS,, n-—2 RSS/(n — 2)
Total TSS = §,, n— 1

Multiple Linear Regression



where
y = lZJ";' X = *]“Exu i = ‘!‘211-'
n n n
Equation (4.3) can be written as
Dxy = a2 x4+ B2+ B 2

Substituting the value of & from (4.5) into this equation, we get

) 2y =nE0@ - BE — Bt) + B 2 + B 2 xa

(4.6)

We can simplify this equation by the use of the following notation. Let us define

8, = E xi; — nxj S, = E Xy, — nx,y
S, = E Xy — niX; 8, = z Xy, — nXy
Sp = 2 x3 — ni Sy, = 2, ¥ — n@

Equation (4.6) can be written as
S, = BiSu + BS,

By a similar simplification, equation (4.4) can be written as
5, = B,Si: + B.Sn

Now we can solve these two equations to get 3, and 3,. We get

_ Snsu- - SIISI_'-'.
B = =

B‘: - 51183, ; 5128y, (4.9)

where A = §,,5; — 5%,. Once we obtain 3, and 3, we can get & from equation
(4.5). We have

&-=JF“E|£|‘_ B:fz
Thus the computational procedure is as follows:

1. Obtain all the means: ¥, £,, £,.
2. Obtain all the sums of squares and sums of products:

> a1, xS x.xy, and so on.
3. Obtain 511; Slb S:J- SU" Sz,.. and S_”..
4. Solve equations (4.7) and (4.8) to get B, and f,.
5. Substitute these in (4.5) to get a.

In the case of simple regression we also defined the following:

residual sum of squares = §,, — BS,,

regression sum of squares = BS,,

BS
o=
> 7S,

The analogous expressions in multiple regression are
RSS = 8§, — £,5,, — 8.5,

regression sum of squares = &.S., + B.S,,

(4.7)

(4.8)



regression sum of squares = 3151, + B.S,

R = B:S,, + BiS,,
ye 12 S

1. @, B,. and B, have normal distributions with means a, B,, B,. respec-
tively.
2. If we denote the correlation coefficient between x, and x, by r,,, then

R o’
‘i’&l‘(ﬁﬂ' - Sn“ - rfz)
R o?
var(B,) = S — 1)
1
s AL —OT
cov(p,, B = 5.0 - 7)
var(a) = % + & var(B,) + 28,1, cov(B,, B,) + =2 var(B,)

covia, B,) = —[%, var(B,) + £, cov(B,, B,)]
covi@, B,) = —[%, cov(B,, B,) + % var(B,)]



Analogous to the other results in the case of simple regression, we have the
following results:

3. If RSS is the residual sum of squares then RSS/o® has a x*-distribution
with degrees of freedom (n — 3). This result can be used to make confi-
dence interval statements about o?.

4. If 6* = RSS/(n — 3), then E(6°) = o’ or ¢7 is an unbiased estimator for
ol

5. If we substitute &? for o® in the expressions in result 2, we get the esti-
mated variances and covariances. The square roots of the estimated vari-
ances are called the standard errors (to be denoted by SE). Then

a — o 3:‘3: ﬁ:—‘.Bz
SE(&) SE@B,) SES(8,)

each has a z-distribution with degrees of freedom (n — 3).

In addition to results 3 to 5, which have counterparts in the case of simple
regression, we have one extra item in the case of multiple regression, that of
confidence regions and joint tests for parameters. We have the following re-
sults.

6 1

F= ﬁls“(ﬁ' — B + 2S5,(B, — B)B: — By + Su(B: — B)] has an

F-distribution with degrees of freedom 2 and (n — 3). This result can be
used to construct a confidence region for B, and B, together and to test
B, and B, together.

B R?/k
(1-R*)/n-k-1

Let the estimated regmssion equatibn be
}'r=ci+|§1x1+ﬁ}r1

Now consider the prediction of the value y, of ¥y given values x, of x,, and x,,
of x,, respectively. These could be values at some future date.
Then we have

Yo = @ + Bixg + B +
Consider
Fo = & + Py + Pt
The prediction error is
Yo —Yo=@& —a + (By — Bxio + (B: — Bxyn — %



Since E(& — a), EB, - B), E(B, — B,), and E(u,) are all equal to zero, we
have E(¥, = y;) = 0. Thus the predictor ¥, is unbiased. Note that what we are
saying is E(J,) = E(y,) (since both ¥, and y, are random variables). The vari-
ance of the prediction error is

a’ (l + %) + (xy — )P v&r{ﬂ.}
+ 200, — £) (X — &) coviB,, By) + (xyp — £,)* var(B,)

In the case of k explanatory variables, this is
k A
o’ (1 + i) + 2 D (xg — £)lxe — £) coviB,. B)
1= =1

We estimate o by RSS/(n — 3) in the case of two explanatory variables and
by RSS/(n = k — 1) in the general case.

In Section 4.3, result 6, we discussed an F-test to test hypotheses about B, and
B,. An alternative expression for this test is defined by the statistic

“ (RRSS — URSS)/r
4.13
URSS/(n = k = 1) (4.15)
where URSS = unrestricted residual sum of squares
RRSS = restricted residual sum of squares obtained by imposing the

restrictions of the hypothesis
r = number of restrictions imposed by the hypothesis .

F =

we have URSS = § (1 — R?), and RRSS = §, . Hence the test is given by

g [s”-S”(I-RZ)]/k = R? _n—k-]
ol S,(1 = R)(n - k - 1) i 18 k (4.14)

which has an F-distribution with degrees of freedom k and (n — & — 1). What



Table 4.5 Analysis of Variance for the Multiple Regression Model

Degrees of
Source of Sum of Freedom, Mean Square,
Variation Squares, SS d.f. SS/d.f. F
Regression RS, k RS, Jk = MS, MS,
F =
- MS,
Residual (1-R)S, n-k-1 (1 - R’)S‘X - MS,
n—k—1
Total S, x4
n- | :

| = R = m{l - R (4.20)

The Analysis-of-Variance Test
Suppose that we have two independent sets of data with sample sizes n, and
n,, respectively. The regression equation is

Y=o, + Bux; + BiaXa b -0+ BuXy + u for the first set

Y =o; + Byx; + PBpxy + 00 c 4 Bux, + u for the second set

For the B’s the first subscript denotes the data set and the second subscript
denotes the variable. A test for stability of the parameters between the popu-
lations that generated the two data sets is a test of the hypothesis:

Hﬂ: p’ll = BII' Btl = E‘Rv ERCEE ﬂu = B}_.;. o), = s

If this hypothesis is true, we can estimate a single equation for the data set
obtained by pooling the two data sets.

The F-test we use is the F-test described in Secction 4.8 based on URSS and
RRSS. To get the unrestricted residual sum of squares we estimate the regres-
sion model for each of the data sets separately. Define

RSS,; = residual sum of squares for the first data set
RSS, = residual sum of squares for the second data set

RSS,
UZ

RSS, has a y*-distribution with d.f. (n, — &k — 1)

“1

has a x*-distribution with d.f. (n, — & — 1)



Since the two data sets are independent (RSS, + RSS,)/o? has a x’ distribution
with d.f. (n, + n, =2k - 2). We will denote (RSS, + RSS,) by URSS. The
restricted residual sum of squares RRSS is obtained from the regression
with the pooled data. (This imposes the restriction that the parameters
are the same.) Thus RRSS/o? has a x*-distribution with d.f. = (n, + n,) -
k- 1.

~ (RRSS ~ URSS)/(k + 1)
" URSS/n, + ny = 2k = 2)

which has an F-distribution with degrees of freedom (k + 1) and (n, + n; =
2k = 2). This test is derived in the appendix to this chapter.

(4.22)

F

_ (RSS - RSS))/n,
RSS/(n, =k = 1)
which has an F-distribution with d.f. n, and n, = k — 1. Here
RSS = residual sum of squares from the regression based on n, + n,
observations; this has (n, + n,) = (k + 1) d.f.
RSS, = residual sum of squares from the regression based on
n, observations; this has n, — k ~ 1d.f.

F (4.27)

R2-1-(1-R?)-1—1_
n—-k-1



6.2 Durbin—Watson Test

The simplest and most commonly used model is one where the errors u, and
u,_, have a correlation p. For this model one can think of testing hypotheses
about p on the basis of p, the correlation between the least squares residuals #,
and «,_,. A commonly used statistic for this purpose (which is related to p) is
the Durbin-Watson (DW) statistic, which we will denote by 4. It is defined as

2 @, - 8,
d _ ..;__"—
2 &
1
where 4, is the estimated residual for period ¢. We can write d as

SE+QE ., -2 a4,_,
d = QI

i
i

|
Since >, 4? and >, @_, are approximately equal if the sample is large, we have
d=2(1 —p).Ifp= +1,thend = 0,and if p = —1, then d = 4. We have
d = 2ifp = 0. If dis close to 0 or 4, the residuals are highly correlated.

The sampling distribution of & depends on the values of the explanatory vari-
ables and hence Durbin and Watson' derived upper (d,,) limits and lower (d,)
limits for the significance levels for «. There are tables to test the hypothesis
of zero autocorrelation against the hypothesis of first-order positive autocor-
relation. (For negative autocorrelation we interchange 4, and d,.)

If d < d,, we reject the null hypothesis of no autocorrelation.
If d = d;, we do not reject the null hypothesis.
If d, < d < d,,. the test is inconclusive.

Hannan and Terrell* show that the upper bound of the DW statistic is a good
approximation to its distribution when the regressors are slowly changing.
They argue that economic time series are slowly changing and hence one can
use d, as the correct significance point.

The significance points in the DW tables at the end of the book are tabulated
for testing p = 0 against p > 0. If d > 2 and we wish to test the hypothesis
p = 0 against p <= 0, we consider 4 — d and refer to the Durbin—Watson tables
as if we are testing for positive autocorrelation.



Consider now the demand and supply model
q=a + bp + cy + u demand function 9.2)
g = a, + bp + ;R + u, supply function

q is the quantity, p the price, y the income, R the rainfall, and «, and u, are the
error terms. Here p and g are the endogenous variables and y and R are the
exogenous variables. Since the exogenous variables are independent of the er-
ror terms «, and u, and satisfy the usual requirements for ordinary least squares
estimation, we can estimate regressions of p and g on y and R by ordinary least
squares, although we cannot estimate equations (9.2) by ordinary least squares.
We will show presently that from these regressions of p and ¢ on y and R we
can recover the parameters in the original demand and supply equations (9.2).
This method is called indirect least squares—it is indirect because we do not
apply least squares to equations (9.2). The indirect least squares method does
not always work, so we will first discuss the conditions under which it works
and how the method can be simplified. To discuss this issue, we first have to
clarify the concept of identification.

If we solve the two equations in (9.2) for g and p in terms of y and R, we get

_ ab, — ab, + by y - ab R + an error
bl _ bl b: - b| b: - bl (9.3)

I L NN
These equations are called the reduced-form equations. Equations (9.2) are

called the structural equations because they describe the structure of the eco-
nomic system. We can write equations (9.3) as

R + an error



q = T, + my + WR + v, (9.4)
P = T4 + Ty + MR + v,

where v, and v, are error terms and

- albz - a:b. — C|b2
m = B = by T, = ——~b2 -5 etc.

The ’s are called reduced-form parameters. The estimation of the equations
(9.4) by ordinary least squares gives us consistent estimates of the reduced
form paramters. From these we have to obtain consistent estimates of the pa-
rameters in equations (9.2). These parameters are called structural parameters.
Comparing (9.3) with (9.4) we get

Byw 2 po=

1 1‘?6 2 _ﬁ_sv

é; = ‘ﬁ-s(&l - 52) é = —'ﬁ's(5| - 52)
a, = #, — b,ir, G, = iy — by,

Since a,, 4., b,, 6., ¢,, &, are all single-valued functions of the 4, they are con-
sistent estimates of the corresponding structural parameters. As mentioned
earlier. this method is known as the indirecr least squares method.

There is a simple counting rule available in the linear systems that we have
been considering. This counting rule is also known as the order condition for
identification. This rule is as follows: Let g be the number of endogenous vari-
ables in the system and . the total number of variables (endogenous and ex-
ogenous) missing from the equation under consideration. Then:

1. If Kk = g — 1, the equation is exactly identified.
2. If k > g — 1, the equation is over-identified.
3. If k < g — 1, the equation is under-identified.



