

COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE NCSC 211 OPERATING SYSTEM

END OF FIRST SEMESTER EXAMINATIONS

NOVEMBER/DECEMBER 2019

LECTURER: MISS L TEMBANI

DURATION: (3 HRS)

INSTRUCTIONS

Answer ALL QUESTIONS from Section A (COMPULSORY)

Answer any THREE questions from Section B

All questions carry equal marks (25)

Section A (compulsory, answer ALL questions)

Question One

i. List and explain any 5 functions of an Operating systems [5 marks]

ii. Explain any 3 types of Operating systems [6 marks]

iii. With the aid of a diagram outline and explain the process attributes [14 marks]

Section B (answer any three (3) questions)

Question Two

a) Consider the following system snapshot using data structures in the Banker's algorithm, with resources A, B, C, and D, and processes P1 to P5:

	MAXIMUM				ALLOCATION				NEED				AVAILABILITY			
	A	В	C	D	A	B	C	D	A	В	C	D	A	В	C	D
P1	6	0	1	2	4	0	0	1					3	2	1	2
P2	1	7	5	0	1	1	0	0								
P3	2	3	5	6	1	2	5	4								
P4	1	6	5	3	0	6	3	3						8-		
P5	1	6	5	6	0	2	1	2								

Using Banker's algorithm, answer the following questions.

i) How many resources of type A, B, C, and D are there?

ii) What are the contents of the Need matrix? [6 marks]

iii) Is the system in a safe state? Why [3 marks]

b.) A system contains 10 units of resource type RI. The resource requirements of three user processes P1, P2 and P3 are as follows;

[6 marks]

	P1	P2	P3
Maximum requirements	8	7	5
Current allocation	3	1	3
Balance requirements	5	6	2
New request made	1	0	0

Using Banker's algorithm, determine if the projected allocation state is safe and whether the request of P1 will be granted or not. [10 marks]

Question Three

Using examples, explain the following classical synchronization problem

- a. Dining philosophers problem
- b. Readers writers problem
- c. Critical section problem
- d. Consumer-Producer Problem
- e. Cigarette-Smokers Problem

[25 marks]

Question Four

a) Table below shows a set of processes and the associated burst time

Process	Burst time
P1	16
P2	13
P3	14
P4	23
P5	37
P6	2
P7	18

Compute the average waiting time when each of these algorithms is used. For each of the algorithms show the total waiting time. Assume a quantum of 15. [13 marks]

b) Describe the four strategies of dealing with deadlock

[12 marks]

Question Five

Describe the evolution of operation systems up to the 20th century.

[25 marks]

Question Six

- a) Describe two file system implementations that use linked lists. Describe the advantages and disadvantages of each method. [12 marks]
- (b) Describe the I-node method of implementing a file system [8 marks]
- (c) It has been suggested that the first part of each UNIX file be kept in the same disk block as its I-node. What, if any, would be the advantage of doing this? [5 marks]