

"Investing in Africa's future" COLLEGE OF BUSINESS, PEACE, LEADERSHIP AND GOVERNANCE (CBPLG)

Data Structures and Algorithms -CSC 411

END OF FIRST SEMESTER EXAMINATIONS

NOVEMBER 2019

LECTURER: Mr.Timothy Makambwa

DURATION: 3 HOURS

INSTRUCTIONS

Answer **ALL** the questions in **Section A** and any **Three questions from Section B** and each question has **20** marks. Total possible mark is **100**.

Start each question on a new page on your answer sheet.

The marks allocated to each question are shown at the end of the section.

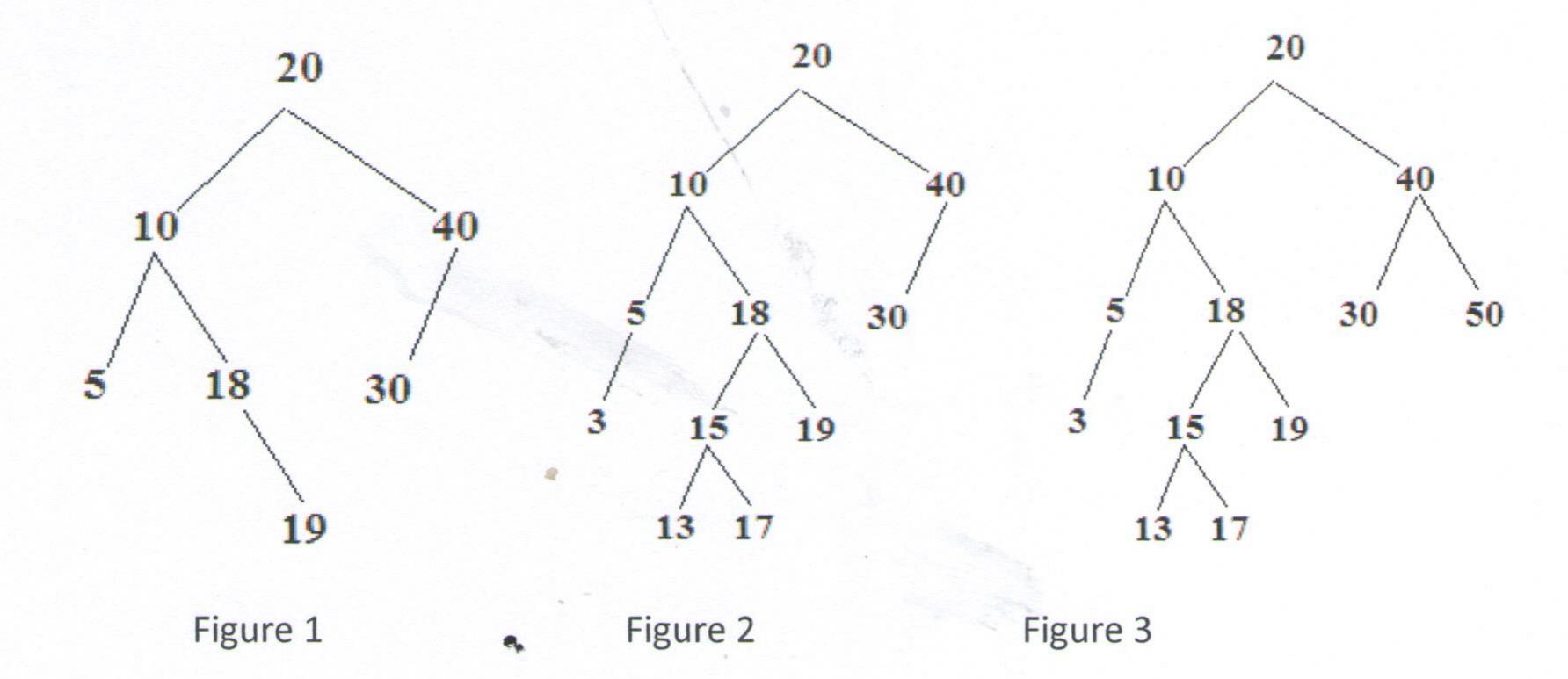
Section A (40 Marks)

Answer all questions in this Section

Question One

Give the best **Big-Oh** characterization for each of the following running time estimates (where n is the size of the input problem). Justify your response

- a) 8n-2
- b) $5n^4 + 3n^3 + 2n^2 + 4n + 1$
- c) $5n^2 + 3n\log n + 2n + 5$
- d) $20n^3 + 10n \log n + 5$
- e) $3\log n + 2$
- f) $2^{n}+2$
- g) 2n + 100 log n


[2x7]

h) Use the definition of **Big-Oh** to prove that 0.01nlog(n)-2000n+6 is O(nlog(n))

[6]

Question Two

Given the following binary search tree:

- 2.1 Draw the AVL tree in Figure 1 after insert the element 25 [5 Marks]
- 2.2 Convert Figure 2 into AVL tree

[5 Marks]

2.3 Convert Figure 3 into AVL tree and then draw the AVL tree after Delete the element 20

10 Marks]

Section B(60 Marks)

Answer any three questions from this Section

Question Two

Suppose Fibonacci_3 defines as the following:

$$\operatorname{Fib}(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \end{cases}$$

$$\operatorname{Fib}(n-1) + \operatorname{Fib}(n-2) + \operatorname{Fib}(n-3) & \text{otherwise}$$

- 2.1 Show the first 10 numbers of Fibonacci_3
- 2.2 Write a recursive function for Fibonacci_3 [8]
- 2.3 Write a Non-recursive function for Fibonacci_3 [8]

Question Three

3.1 Constuct the Binary Search tree given the number 50,30,70,25,80,40,60,75,35,90,100 in order

[4]

[4]

- 3.2 Draw the Binary Search tree in (3.1) after <u>delete</u> the element 90 [4]
- 3.3 Draw the Binary Search tree in (3.2) after insert the element 73 [4]
- **3.4** Draw the Binary Search tree in (3.3) after <u>delete</u> the element 100 and 80 (use the right child if you need to choose left side or right)
- 3.5 Draw the Binary Search tree in (3.4) after <u>delete</u> the element 25 [4]

Question Four

4.1. Based on the given sequence, construct a Binary Heap step by step through "insert one element at a time."

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		
	1		3	5	7	9	20	18	8	16	14	12	10	8	6	4	2

4.2. Based on the given sequence, use "BuildHeap operation" to construct a Binary Heap step by step:

0	1	2	3	4	5	6	7	8 9	10	11	12	13	14	15		
		1												6	1	

- 4.3. Draw the Binary Heap in (4.2) after one deleteMin operation
- 4.4. Draw the Binary Heap in (3.3) after **one** deleteMin operation [2]

Question Five

- 5.1 Explain the following terms as they are used in data structures and algorithms
 - (i) Sorting
 - (ii) Traversal
 - (iii) Push
 - (iv) Search space
 - (v) Insert

[10]

[2]

- 5.2 Explain the factors you would consider when selecting an algorithm to use from among several alternative algorithms to use [5]
- 5.3 Compute the running time for the following functions under asymptotic growth
 - (i) Linear algorithm

[2]

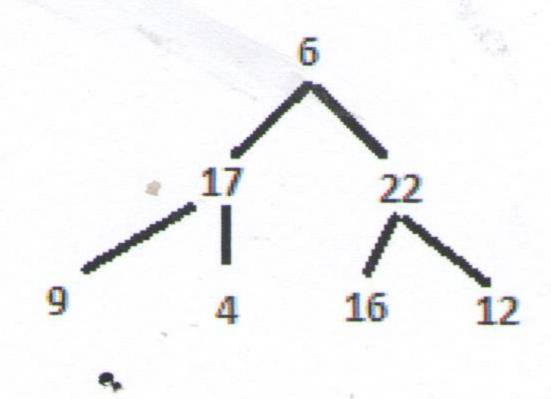
(ii) $N \log N$ algorithm

[3]

Question Six

6.1 What are the characteristics of an algorithm

[4]


6.2 Data about exam results are stored into a singly linked list. Each list element consists of:student name, student ID, course code, grade;

The list is not sorted. Write the function that removes students with marks less than 50 from the list. The function returns the number of removed list members.

[8]

6.3 If the binary tree below is printed by a preorder traversal, what will the result be?

[6]

Question Seven

- 7.1 What are stacks? How can stacks be used to check whether an expression is correctly parenthised or not. For eg(()) is well formed but (() or)()(is not. [7]
- 7.2 What is a linear array? Explain how two dimensional arrays are represented in memory. [5]
- 7.3 Write a procedure to insert a node into a linked list at a specific position and draw the same by taking any example? [7]

END OF PAPER